ﻻ يوجد ملخص باللغة العربية
Soft functions defined in terms of matrix elements of soft fields dressed by Wilson lines are central components of factorization theorems for cross sections and decay rates in collider and heavy-quark physics. While in many cases the relevant soft functions are defined in terms of gluon operators, at subleading order in power counting soft functions containing quark fields appear. We present a detailed discussion of the properties of the soft-quark soft function consisting of a quark propagator dressed by two finite-length Wilson lines connecting at one point. This function enters in the factorization theorem for the Higgs-boson decay amplitude of the $htogammagamma$ process mediated by light-quark loops. We perform the renormalization of this soft function at one-loop order, derive its two-loop anomalous dimension and discuss solutions to its renormalization-group evolution equation in momentum space, in Laplace space and in the diagonal space, where the evolution is strictly multiplicative.
There has been recent interest in understanding the all loop structure of the subleading power soft and collinear limits, with the goal of achieving a systematic resummation of subleading power infrared logarithms. Most of this work has focused on su
We present the first calculation of the next-to-next-to-leading order threshold soft function for top quark pair production at hadron colliders, with full velocity dependence of the massive top quarks. Our results are fully analytic, and can be entir
The dynamical cascade of momentum, spin, charge, and other quantum numbers from an ultra-violet process into the infra-red is a fundamental concern for asymptotically free or conformal gauge field theories. It is also a practical concern for any high
Accurate knowledge of the thermodynamic properties of zero-temperature, high-density quark matter plays an integral role in attempts to constrain the behavior of the dense QCD matter found inside neutron-star cores, irrespective of the phase realized
High-order perturbative calculations for thermodynamic quantities in QCD are complicated by the physics of dynamical screening that affects the soft, long-wavelength modes of the system. Here, we provide details for the evaluation of this soft contri