ترغب بنشر مسار تعليمي؟ اضغط هنا

Commissioning of the MEG II tracker system

268   0   0.0 ( 0 )
 نشر من قبل Marco Chiappini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MEG experiment at the Paul Scherrer Institut (PSI) represents the state of the art in the search for the charged Lepton Flavour Violating (cLFV) $mu^+ rightarrow e^+ gamma$ decay. With the phase 1, MEG set the new world best upper limit on the $mbox{BR}(mu^+ rightarrow e^+ gamma) < 4.2 times 10^{-13}$ (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching a sensitivity enhancement of about one order of magnitude compared to the previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector for MEG II. CDCH is a low-mass single volume detector with high granularity: 9 layers of 192 drift cells, few mm wide, defined by $sim 12000$ wires in a stereo configuration for longitudinal hit localization. The filling gas mixture is Helium:Isobutane (90:10). The total radiation length is $1.5 times 10^{-3}$ $mbox{X}_0$, thus minimizing the Multiple Coulomb Scattering (MCS) contribution and allowing for a single-hit resolution $< 120$ $mu$m and an angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This article presents the CDCH commissioning activities at PSI after the wiring phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps preparation, HV tests and conditioning of the chamber are described, aiming at reaching the final stable working point. The integration into the MEG II experimental apparatus is described, in view of the first data taking with cosmic rays and $mu^+$ beam during the 2018 and 2019 engineering runs. The first gas gain results are also shown. A full engineering run with all the upgraded detectors and the complete DAQ electronics is expected to start in 2020, followed by three years of physics data taking.

قيم البحث

اقرأ أيضاً

The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the $e^+$ in searching for the decay $mu^+ rightarrow e^+gamma$. It is part of a magnetic spectrometer with the $mu^+$ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. The design criteria, the obtained performances and the commissioning of the detector are presented herein.
The MEG experiment, designed to search for the mu+->e+ gamma decay at a 10^-13 sensitivity level, completed data taking in 2013. In order to increase the sensitivity reach of the experiment by an order of magnitude to the level of 6 x 10-14 for the b ranching ratio, a total upgrade, involving substantial changes to the experiment, has been undertaken, known as MEG II. We present both the motivation for the upgrade and a detailed overview of the design of the experiment and of the expected detector performance.
We have developed a new laser-based time calibration system for the MEG II timing counter dedicated to timing measurement of positrons. The detector requires precise timing alignment between $sim,$500 scintillation counters. In this study, we present the calibration system which can directly measure the time offset of each counter relative to the laser-synchronized pulse. We thoroughly tested all the optical components and the uncertainty of this method is estimated to be 24 ps. In 2017, we installed the full system into the MEG II environment and performed a commissioning run. This method shows excellent stability and consistency with another method. The proposed system provides a precise timing alignment for SiPM-based timing detectors. It also has potential in areas such as TOF-PET.
We have developed a new laser-based time calibration system for highly segmented scintillator counters like the MEG II pixelated Timing Counter (pTC), consisting of 512-centimeter scale scintillator counters read out by silicon photomultipliers (SiPM s). It is difficult to apply previous laser-based calibration methods for conventional meter-scale Time-Of-Flight detectors to the MEG II pTC from the implementation and the accuracy points of view. This paper presents a new laser-based time calibration system which can overcome such difficulties. A laser pulse is split into each scintillator counter via several optical components so that we can directly measure the time offset of each counter relative to the laser-emitted time. We carefully tested all the components and procedures prior to the actual operation. The laser system was installed into the pTC and thoroughly tested under the real experimental condition. The system showed good stability and being sensitive to any change of timing larger than ~10 ps. Moreover, it showed an uncertainty of 48 ps in the determination of the time offsets, which meets our requirements. The new method provides an example of the implementation of a precise timing alignment for the new type of detectors enabled by the advance of SiPM technology.
The MEG experiment at the Paul Scherrer Institut searches for the charged-Lepton-Flavor-Violating mu+ -> e+ gamma decay. MEG has already set the world best upper limit on the branching ratio: BR<4.2x10^-13 @ 90% C.l. An upgrade (MEG II) of the whole detector has been approved to obtain a substantial increase of sensitivity. Currently MEG II is completing the upgrade of the various detectors, an engineering run and a pre-commissioning run were carried out during 2018 and 2019. The new positron tracker is a unique volume, ultra-light He based cylindrical drift chamber (CDCH), with high granularity: 9 layers of 192 square drift cells, ~6-9 mm wide, consist of ~12000 wires in a full stereo configuration. To ensure the electrostatic stability of the drift cells a new wiring strategy should be developed due to the high wire density (12 wires/cm^2 ), the stringent precision requirements on the wire position and uniformity of the wire mechanical tension (better than 0.5 g) The basic idea is to create multiwire frames, by soldering a set of (16 or 32) wires on 40 um thick custom wire-PCBs. Multiwire frames and PEEK spacers are overlapped alternately along the radius, to set the proper cell width, in each of the twelve sectors defined by the spokes of the rudder wheel shaped end-plates. Despite to the conceptual simplicity of the assembling strategies, the building of the multiwire frames, with the set requirements, imposes a use of an automatic wiring system. The MEG II CDCH is the first cylindrical drift chamber ever designed and built in a modular way and it will allow to track positrons, with a momentum greater than 45 MeV/c, with high efficiency by using a very small amount of material, 1.5x10^-3 X0 . We describe the CDCH design and construction, the wiring phase at INFN-Lecce, the choice of the wires, their mechanical properties, the assembly and sealing at INFN-Pisa and the commissioning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا