ﻻ يوجد ملخص باللغة العربية
In this work, single crystalline $alpha$-Fe$_2$O$_3$ nanoflakes (NFs) are formed in a highly dense array by Au seeding of a Fe substrate by a thermal oxidation technique. The NFs are conformally decorated with a thin FeOOH cocatalyst layer. Photoelectrochemical (PEC) measurements show that this photoanode with the $alpha$-Fe$_2$O$_3$/FeOOH NFs rooted on the Au/Fe structure exhibits a significantly enhanced PEC water oxidation performance compared to the plain $alpha$-Fe$_2$O$_3$ nanostructure on the Fe substrate. The $alpha$-Fe$_2$O$_3$/FeOOH NFs on Au/Fe photoanode yields a photocurrent density of 3.1 mA cm-2 at 1.5 VRHE, and a remarkably low onset potential of 0.5-0.6 VRHE in 1 M KOH under AM 1.5G (100 mW cm-2) simulated sunlight illumination. The enhancement in PEC performance can be attributed to a synergistic effect of the FeOOH top decoration and Au under-layer. While FeOOH facilitates hole transfer at the interface of electrode/electrolyte, the Au layer provides a sink for the electron transport to the back contact: this leads overall to a drastically improved charge-separation efficiency in the single crystalline $alpha$-Fe$_2$O$_3$ NF photoanode.
Gallium oxide films were grown by HVPE on (0001) sapphire substrates with and without $alpha$-Cr$_2$O$_3$ buffer produced by RF magnetron sputtering. Deposition on bare sapphire substrates resulted in a mixture of $alpha$-Ga$_2$O$_3$ and $epsilon$-Ga
Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placem
Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use f
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the
$beta$-Ga$_2$O$_3$ is a next-generation ultra wide bandgap semiconductor (E$_g$ = 4.8 eV to 4.9 eV) that can be homoepitaxially grown on commercial substrates, enabling next-generation power electronic devices among other important applications. Anal