ﻻ يوجد ملخص باللغة العربية
Continuum models of epidemics do not take into account the underlying microscopic network structure of social connections. This drawback becomes extreme during quarantine when most people dramatically decrease their number of social interactions, while others (like cashiers in grocery stores) continue maintaining hundreds of contacts per day. We formulate a two-level model of quarantine. On a microscopic level, we model a single neighborhood assuming a star-network structure. On a mesoscopic level, the neighborhoods are placed on a two-dimensional lattice with nearest neighbors interactions. The modeling results are compared with the COVID-19 data for several counties in Michigan (USA) and the phase diagram of parameters is identified.
The importance of a strict quarantine has been widely debated during the COVID-19 epidemic even from the purely epidemiological point of view. One argument against strict lockdown measures is that once the strict quarantine is lifted, the epidemic co
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epide
We propose a minimal off-lattice model of living organisms where just a very few dynamical rules of growth are assumed. The stable coexistence of many clusters is detected when we replace the global restriction rule by a locally applied one. A rich v
Spreading processes have been largely studied in the literature, both analytically and by means of large-scale numerical simulations. These processes mainly include the propagation of diseases, rumors and information on top of a given population. In
We introduce a minimalist dynamical model of wealth evolution and wealth sharing among $N$ agents as a platform to compare the relative merits of altruism and individualism. In our model, the wealth of each agent independently evolves by diffusion. F