ترغب بنشر مسار تعليمي؟ اضغط هنا

Millimeter-Wave Beam Search with Iterative Deactivation and Beam Shifting

236   0   0.0 ( 0 )
 نشر من قبل Chunshan Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Millimeter Wave (mmWave) communications rely on highly directional beams to combat severe propagation loss. In this paper, an adaptive beam search algorithm based on spatial scanning, called Iterative Deactivation and Beam Shifting (IDBS), is proposed for mmWave beam alignment. IDBS does not require advance information such as the Signal-to-Noise Ratio (SNR) and channel statistics, and matches the training overhead to the unknown SNR to achieve satisfactory performance. The algorithm works by gradually deactivating beams using a Bayesian probability criterion based on a uniform improper prior, where beam deactivation can be implemented with low-complexity operations that require computing a low-degree polynomial or a search through a look-up table. Numerical results confirm that IDBS adapts to different propagation scenarios such as line-of-sight and non-line-of-sight and to different SNRs. It can achieve better tradeoffs between training overhead and beam alignment accuracy than existing non-adaptive algorithms that have fixed training overheads.

قيم البحث

اقرأ أيضاً

Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
125 - Jiayu Zhang , Min Li , Shihao Yan 2020
Covert communication prevents legitimate transmission from being detected by a warden while maintaining certain covert rate at the intended user. Prior works have considered the design of covert communication over conventional low-frequency bands, bu t few works so far have explored the higher-frequency millimeter-wave (mmWave) spectrum. The directional nature of mmWave communication makes it attractive for covert transmission. However, how to establish such directional link in a covert manner in the first place remains as a significant challenge. In this paper, we consider a covert mmWave communication system, where legitimate parties Alice and Bob adopt beam training approach for directional link establishment. Accounting for the training overhead, we develop a new design framework that jointly optimizes beam training duration, training power and data transmission power to maximize the effective throughput of Alice-Bob link while ensuring the covertness constraint at warden Willie is met. We further propose a dual-decomposition successive convex approximation algorithm to solve the problem efficiently. Numerical studies demonstrate interesting tradeoff among the key design parameters considered and also the necessity of joint design of beam training and data transmission for covert mmWave communication.
Recent applications of the Full Duplex (FD) technology focus on enabling simultaneous control communication and data transmission to reduce the control information exchange overhead, which impacts end-to-end latency and spectral efficiency. In this p aper, we present a simultaneous direction estimation and data transmission scheme for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems, enabled by a recent FD MIMO technology with reduced hardware complexity Self-Interference (SI) cancellation. We apply the proposed framework in the mmWave analog beam management problem, considering a base station equipped with a large transmit antenna array realizing downlink analog beamforming and few digitally controlled receive antenna elements used for uplink Direction-of-Arrival (DoA) estimation. A joint optimization framework for designing the DoA-assisted analog beamformer and the analog as well as digital SI cancellation is presented with the objective to maximize the achievable downlink rate. Our simulation results showcase that the proposed scheme outperforms its conventional half-duplex counterpart, yielding reduced DoA estimation error and superior downlink data rate.
Swift and accurate alignment of transmitter (Tx) and receiver (Rx) beams is a fundamental design challenge to enable reliable outdoor millimeter-wave communications. In this paper, we propose a new Optimized Two-Stage Search (OTSS) algorithm for Tx-R x beam alignment via spatial scanning. In contrast to one-shot exhaustive search, OTSS judiciously divides the training energy budget into two stages. In the first stage, OTSS explores and trains all candidate beam pairs and then eliminates a set of less favorable pairs learned from the received signal profile. In the second stage, OTSS takes an extra measurement for each of the survived pairs and combines with the previous measurement to determine the best one. For OTSS, we derive an upper bound on its misalignment probability, under a single-path channel model with training codebooks having an ideal beam pattern. We also characterize the decay rate function of the upper bound with respect to the training budget and further derive the optimal design parameters of OTSS that maximize the decay rate. OTSS is proved to asymptotically outperform state-of-the-art beam alignment algorithms, and is numerically shown to achieve better performance with limited training budget and practically synthesized beams.
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multip ath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا