ﻻ يوجد ملخص باللغة العربية
The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on its background knowledge and how to match response candidates with both context and knowledge simultaneously. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for this task. In this method, a context filter and a knowledge filter are first built, which derive knowledge-aware context representations and context-aware knowledge representations respectively by global and bidirectional attention. Besides, the entries irrelevant to the conversation are discarded by the knowledge filter. After that, iteratively referring is performed between context and response representations as well as between knowledge and response representations, in order to collect deep matching features for scoring response candidates. Experimental results show that FIRE outperforms previous methods by margins larger than 2.8% and 4.1% on the PERSONA-CHAT dataset with original and revised personas respectively, and margins larger than 3.1% on the CMU_DoG dataset in terms of top-1 accuracy. We also show that FIRE is more interpretable by visualizing the knowledge grounding process.
Grounding human-machine conversation in a document is an effective way to improve the performance of retrieval-based chatbots. However, only a part of the document content may be relevant to help select the appropriate response at a round. It is thus
In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker c
Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifical
This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matchi
Persona can function as the prior knowledge for maintaining the consistency of dialogue systems. Most of previous studies adopted the self persona in dialogue whose response was about to be selected from a set of candidates or directly generated, but