ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Equilibrium Distribution in Infinite-Dimensional Hilbert Spaces

138   0   0.0 ( 0 )
 نشر من قبل Roderich Tumulka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Roderich Tumulka




اسأل ChatGPT حول البحث

The thermal equilibrium distribution over quantum-mechanical wave functions is a so-called Gaussian adjusted projected (GAP) measure, $GAP(rho_beta)$, for a thermal density operator $rho_beta$ at inverse temperature $beta$. More generally, $GAP(rho)$ is a probability measure on the unit sphere in Hilbert space for any density operator $rho$ (i.e., a positive operator with trace 1). In this note, we collect the mathematical details concerning the rigorous definition of $GAP(rho)$ in infinite-dimensional separable Hilbert spaces. Its existence and uniqueness follows from Prohorovs theorem on the existence and uniqueness of Gaussian measures in Hilbert spaces with given mean and covariance. We also give an alternative existence proof. Finally, we give a proof that $GAP(rho)$ depends continuously on $rho$ in the sense that convergence of $rho$ in the trace norm implies weak convergence of $GAP(rho)$.



قيم البحث

اقرأ أيضاً

155 - A. A. Kuznetsova 2010
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional ca se. The properties of the conditional entropy such as monotonicity, concavity and subadditivity are also generalized to the infinite-dimensional case.
This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3,2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hil bert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.
We find supersymmetric partners of a family of self-adjoint operators which are self-adjoint extensions of the differential operator $-d^2/dx^2$ on $L^2[-a,a]$, $a>0$, that is, the one dimensional infinite square well. First of all, we classify these self-adjoint extensions in terms of several choices of the parameters determining each of the extensions. There are essentially two big groups of extensions. In one, the ground state has strictly positive energy. On the other, either the ground state has zero or negative energy. In the present paper, we show that each of the extensions belonging to the first group (energy of ground state strictly positive) has an infinite sequence of supersymmetric partners, such that the $ell$-th order partner differs in one energy level from both the $(ell-1)$-th and the $(ell+1)$-th order partners. In general, the eigenvalues for each of the self-adjoint extensions of $-d^2/dx^2$ come from a transcendental equation and are all infinite. For the case under our study, we determine the eigenvalues, which are also infinite, {all the extensions have a purely discrete spectrum,} and their respective eigenfunctions for all of its $ell$-th supersymmetric partners of each extension.
174 - A.S. Holevo , M.E. Shirokov 2012
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$ -capacity of constrained channels are obtained and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between the coherent information and the measure of privacy of classical information transmission by infinite-dimensional quantum channel is proved.
The introduction of operator states and of observables in various fields of quantum physics has raised questions about the mathematical structures of the corresponding spaces. In the framework of third quantization it had been conjectured that we dea l with Hilbert spaces although the mathematical background was not entirely clear, particularly, when dealing with bosonic operators. This in turn caused some doubts about the correct way to combine bosonic and fermionic operators or, in other words, regular and Grassmann variables. In this paper we present a formal answer to the problems on a simple and very general basis. We illustrate the resulting construction by revisiting the Bargmann transform and finding the known connection between L^2(R) and the Bargmann-Hilbert space. We then use the formalism to give an explicit formulation for Fock spaces involving both fermions and bosons thus solving the problem at the origin of our considerations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا