ترغب بنشر مسار تعليمي؟ اضغط هنا

The anomalous Hall Effect in a Magnetically Extended Topological Insulator Heterostructure

129   0   0.0 ( 0 )
 نشر من قبل Jing Teng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Constructing heterostructures of a topological insulator (TI) with an undoped magnetic insulator (MI) is a clean and versatile approach to break the time-reversible symmetry in the TI surface states. Despite a lot of efforts, the strength of interfacial magnetic proximity effect (MPE) is still too weak to achieve the quantum anomalous Hall effect and many other topological quantum phenomena. Recently, a new approach based on intercalation of atomic layers of MI, referred to as magnetic extension, was proposed to realize strong MPE [2D Mater. 4, 025082(2017)]. Motivated by this proposal, here, we study a magnetic extension system prepared by molecular beam epitaxy growth of MnSe thin films on topological insulator (Bi,Sb)2Te3. Direct evidence is obtained for intercalation of MnSe atomic layer into a few quintuple layers of (Bi,Sb)2Te3, forming either a double magnetic septuple layer (SL) or an isolated single SL at the interface, where one SL denotes a van der Waals building block consisting of B-A-B-Mn-B-A-B (A=Bi1-xSbx, B= Te1-ySey). The two types of interfaces (namely TI/mono-SL and TI/bi-SL) have different MPE, which is manifested as distinctively different transport behaviors. Specifically, the mono-SL induces a spinflip transition with a sharp change at small magnetic field in the anomalous Hall effect of TI layers, while the bi-SL induces a spin-flop transition with a slow change at large field. Our work demonstrates a useful platform to realize the full potential of the magnetic extension approach for pursuing novel topological physics and related device applications.


قيم البحث

اقرأ أيضاً

We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations , which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
Heterostructures between topological insulators (TI) and magnetic insulators represent a pathway to realize the quantum anomalous Hall effect (QAHE). Using density functional theory based systematic screening and investigation of thermodynamic, magne tic and topological properties of heterostructures, we demonstrate that forming a type-I heterostructure between a wide gap antiferromagnetic insulator Cr$_2$O$_3$ and a TI-film, such as Sb$_2$Te$_3$, can lead to pinning of the Fermi-level at the center of the gap, even when magnetically doped. Cr-doping in the heterostructure increases the gap to $sim$ 64.5 meV, with a large Zeeman energy from the interfacial Cr dopants, thus overcoming potential metallicity due to band bending effects. By fitting the band-structure around the Fermi-level to a 4-band k.p model Hamiltonian, we show that Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ is a Chern insulator with a Chern number C = -1. Transport calculations further show chiral edge-modes localized at the top/bottom of the TI-film to be the dominant current carriers in the material. Our predictions of a large interfacial magnetism due to Cr-dopants, that coupled antiferromagnetically to the AFM substrate is confirmed by our polarised neutron reflectometry measurements on MBE grown Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructures, and is consistent with a positive exchange bias measured in such systems recently. Consequently, Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructure represents a promising platform for the development of functional topological magnetic devices, with high tunability.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostruct ures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here, we investigate the recently discovered AHE in the chiral antiferromagnet Mn3Sn by measuring a thermal analog of the AHE, known as an anomalous thermal Hall effect (ATHE). The amplitude of the ATHE scales with the anomalous Hall conductivity of Mn3Sn over a wide temperature range, demonstrating that the AHE of Mn3Sn arises from a dissipationless intrinsic mechanism associated with the Berry curvature. Moreover, we find that the dissipationless AHE is significantly stabilized by shifting the Fermi level toward the magnetic Weyl points. Thus, in Mn3Sn, the Berry curvature emerging from the proposed magnetic Weyl fermion state is a key factor for the observed AHE and ATHE.
Breaking the time-reversal symmetry of a topological insulator (TI) by ferromagnetism can induce exotic magnetoelectric phenomena such as quantized anomalous Hall (QAH) effect. Experimental observation of QAH effect in a magnetically doped TI require s ferromagnetism not relying on the charge carriers. We have realized the ferromagnetism independent of both polarity and density of carriers in Cr-doped BixSb2-xTe3 thin films grown by molecular beam epitaxy. Meanwhile, the anomalous Hall effect is found significantly enhanced with decreasing carrier density, with the anomalous Hall angle reaching unusually large value 0.2 and the zero field Hall resistance reaching one quarter of the quantum resistance (h/e2), indicating the approaching of the QAH regime. The work paves the way to ultimately realize QAH effect and other unique magnetoelectric phenomena in TIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا