ﻻ يوجد ملخص باللغة العربية
Quark nuggets are a candidate for dark matter consistent with the Standard Model. Previous models of quark nuggets have investigated properties arising from their being composed of strange, up, and down quarks and have not included any effects caused by their self-magnetic field. However, Tatsumi found that the core of a magnetar star may be a quark nugget in a ferromagnetic state with core magnetic field B between $10^{ 11}$ T and $10^{ 13}$ T. We apply Tatsumi$$s result to quark-nugget dark-matter and report results on aggregation of magnetized quark nuggets (MQNs) after formation from the quark-gluon plasma until expansion of the universe freezes out the mass distribution to include $10^{ -24}$ kg to $10^{ 14}$ kg. Aggregation overcomes weak-interaction decay. Computed mass distributions show MQNs are consistent with requirements for dark matter and indicate that geologic detectors (craters in peat bogs) and space-based detectors (satellites measuring radio-frequency emissions after passage through normal matter) should be able to detect MQN dark matter. Null and positive observations narrow the range of a key parameter B to between $10^{ 11}$ T and 3 $10^{ 13}$ T.
A network of synchronized detectors can increase the likelihood of discovering the QCD axion, within the Axion Quark Nugget (AQN) dark matter model. A similar network can also discriminate the X-rays emitted by the AQNs from the background signal. Th
In this work we advocate for the idea that two seemingly unrelated 80-year-old mysteries - the nature of dark matter and the high temperature of the million degree solar corona - may have resolutions that lie within the same physical framework. The c
The Murchison Widefield Array (MWA) recorded cite{Mondal-2020} impulsive radio events in the quiet solar corona at frequencies 98, 120, 132, and 160 MHz. We propose that these radio events are the direct manifestation of dark matter annihilation even
Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lo
We study the new mechanism of the axion production suggested recently in [1,2]. This mechanism is based on the so-called Axion Quark Nugget (AQN) dark matter model, which was originally invented to explain the similarity of the dark and visible cosmo