ﻻ يوجد ملخص باللغة العربية
We present a study of the symmetry energy (a_s) and its slope parameter (L) of nuclear matter in the general framework of the Landau-Migdal theory. We derive an exact relation between a_s and L, which involves the nucleon effective mass and three-particle Landau-Migdal parameters. We also present simple estimates which show that there are two main mechanisms to explain the empirical values of L: The proton-neutron effective mass difference in isospin asymmetric matter, and the isovector three-body Landau-Migdal parameter H_0. We give simple estimates of both effects and show that they are of similar magnitude.
We derive from the subleading contributions to the chiral three-nucleon interaction [published in Phys.~Rev.~C77, 064004 (2008) and Phys.~Rev.~C84, 054001 (2011)] their first-order contributions to the energy per particle of isospin-symmetric nuclear
We present a study of the skewness of nuclear matter, which is proportional to the third derivative of the energy per nucleon with respect to the baryon density at the saturation point, in the framework of the Landau-Migdal theory. We derive an exact
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic e
Working on the framework of Relativistic Mean Field theory, we exposed the effect of nonlinear isoscalar-isovector coupling on G2 parameter set on the density dependence of nuclear symmetry energy in infinite nuclear matter. The observables like symm
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the $Lambda$ and $Sigma$ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter with