ﻻ يوجد ملخص باللغة العربية
We compute the production rate of the energy density carried by gravitational waves emitted by a Standard Model plasma in thermal equilibrium, consistently to leading order in coupling constants for momenta $ksim pi T$. Summing up the contributions from the full history of the universe, the highest temperature of the radiation epoch can be constrained by the so-called $N_{rm eff}$ parameter. The current theoretical uncertainty $Delta N_{rm eff} le 10^{-3}$ corresponds to $T_{rm max} le 2times 10^{17}$ GeV. In the course of the computation, we show how a subpart of the production rate can be determined with the help of standard packages, even if subsequently an IR subtraction and thermal resummation need to be implemented.
Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majo
Global cosmic strings are generically predicted in particle physics beyond the Standard Model, e.g., a post-inflationary global $U(1)$ symmetry breaking which may associate with axion-like dark matter. We demonstrate that although subdominant to Gold
A metastable cosmic-string network is a generic consequence of many grand unified theories (GUTs) when combined with cosmic inflation. Metastable cosmic strings are not topologically stable, but decay on cosmic time scales due to pair production of G
We propose a novel probe of fundamental physics that involves the exploration of temporal correlations between the multi-frequency electromagnetic (EM) signal and the sub-threshold GW signal or stochastic gravitational wave background (SGWB) originat
Phase transitions in the early universe can readily create an observable stochastic gravitational wave background. We show that such a background necessarily contains anisotropies analogous to those of the cosmic microwave background (CMB) of photons