ﻻ يوجد ملخص باللغة العربية
A graph where each vertex $v$ has a list $L(v)$ of available colors is $L$-colorable if there is a proper coloring such that the color of $v$ is in $L(v)$ for each $v$. A graph is $k$-choosable if every assignment $L$ of at least $k$ colors to each vertex guarantees an $L$-coloring. Given a list assignment $L$, an $L$-request for a vertex $v$ is a color $cin L(v)$. In this paper, we look at a variant of the widely studied class of precoloring extension problems from [Z. Dvov{r}ak, S. Norin, and L. Postle: List coloring with requests. J. Graph Theory 2019], wherein one must satisfy enough, as opposed to all, of the requested set of precolors. A graph $G$ is $varepsilon$-flexible for list size $k$ if for any $k$-list assignment $L$, and any set $S$ of $L$-requests, there is an $L$-coloring of $G$ satisfying an $varepsilon$-fraction of the requests in $S$. It is conjectured that planar graphs are $varepsilon$-flexible for list size $5$, yet it is proved only for list size $6$ and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masav{r}ik and show that planar graphs without $K_4^-$ are $varepsilon$-flexible for list size $5$. We also prove that planar graphs without $4$-cycles and $3$-cycle distance at least 2 are $varepsilon$-flexible for list size $4$. Finally, we introduce a new (slightly weaker) form of $varepsilon$-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are $varepsilon$-flexible for list size $5$.
A pair of non-adjacent edges is said to be separated in a circular ordering of vertices, if the endpoints of the two edges do not alternate in the ordering. The circular separation dimension of a graph $G$, denoted by $pi^circ(G)$, is the minimum num
The complexity of graph isomorphism (GraphIso) is a famous unresolved problem in theoretical computer science. For graphs $G$ and $H$, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph
A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. NIC-planarity generalizes IC-planarity, which allows a vertex to be incident t
Let $G$ be a ${C_4, C_5}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum num