ترغب بنشر مسار تعليمي؟ اضغط هنا

Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications

47   0   0.0 ( 0 )
 نشر من قبل Balint Meszaros
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary cell surface receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). Recently it has been noticed that the viral Spike protein has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif resource, ELM, and were presented with candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton and cell signalling. These SLiM candidates are highly conserved in vertebrates. They suggest potential interactions with the AP2 mu2 subunit as well as I-BAR, LC3, PDZ, PTB and SH2 domains found in signalling and regulatory proteins present in epithelial lung cells. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, often involving tyrosine phosphorylation status. Candidate LIR motifs are present in the tails of ACE2 and integrin beta3, suggesting that these proteins can directly recruit autophagy components. We also noticed that the extracellular part of ACE2 has a conserved MIDAS structural motif, which are commonly used by beta integrins for ligand binding, potentially supporting the proposal that integrins and ACE2 share common ligands. The findings presented here identify several molecular links and testable hypotheses that might help uncover the mechanisms of SARS-CoV-2 attachment, entry and replication, and strengthen the possibility that it might be possible to develop host-directed therapies to dampen the efficiency of viral entry and hamper disease progression. The strong sequence conservation means that these putative SLiMs are good candidates: Nevertheless, SLiMs must always be validated by experimentation before they can be stated to be functional.



قيم البحث

اقرأ أيضاً

We examine a pair of graph generative models for the therapeutic design of novel drug candidates targeting SARS-CoV-2 viral proteins. Due to a sense of urgency, we chose well-validated models with unique strengths: an autoencoder that generates molec ules with similar structures to a dataset of drugs with anti-SARS activity and a reinforcement learning algorithm that generates highly novel molecules. During generation, we explore optimization toward several design targets to balance druglikeness, synthetic accessability, and anti-SARS activity based on icfifty. This generative frameworkfootnote{https://github.com/exalearn/covid-drug-design} will accelerate drug discovery in future pandemics through the high-throughput generation of targeted therapeutic candidates.
The genomic ssRNA of coronaviruses is packaged within a helical nucleocapsid. Due to transitional symmetry of a helix, weakly specific cooperative interaction between ssRNA and nucleocapsid proteins leads to the natural selection of specific quasi-pe riodic assembly/packaging signals in the related genomic sequence. Such signals coordinated with the nucleocapsid helical structure were detected and reconstructed in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2. The main period of the signals for both viruses was about 54 nt, that implies 6.75 nt per N protein. The complete coverage of ssRNA genome of length about 30,000 nt by the nucleocapsid would need 4,400 N proteins, that makes them the most abundant among the structural proteins. The repertoires of motifs for SARS-CoV and SARS-CoV-2 were divergent but nearly coincided for different isolates of SARS-CoV-2. We obtained the distributions of assembly/packaging signals over the genomes with non-overlapping windows of width 432 nt. Finally, using the spectral entropy, we compared the load from point mutations and indels during virus age for SARS-CoV and SARS-CoV-2. We found the higher mutational load on SARS-CoV. In this sense, SARS-CoV-2 can be treated as a newborn virus. These observations may be helpful in practical medical applications and are of basic interest.
382 - Changchuan Yin 2020
The emerging global infectious COVID-19 coronavirus disease by novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presents critical threats to global public health and the economy since it was identified in late December 2019 in China . The virus has gone through various pathways of evolution. For understanding the evolution and transmission of SARS-CoV-2, genotyping of virus isolates is of great importance. We present an accurate method for effectively genotyping SARS-CoV-2 viruses using complete genomes. The method employs the multiple sequence alignments of the genome isolates with the SARS-CoV-2 reference genome. The SNP genotypes are then measured by Jaccard distances to track the relationship of virus isolates. The genotyping analysis of SARS-CoV-2 isolates from the globe reveals that specific multiple mutations are the predominated mutation type during the current epidemic. Our method serves a promising tool for monitoring and tracking the epidemic of pathogenic viruses in their gradual and local genetic variations. The genotyping analysis shows that the genes encoding the S proteins and RNA polymerase, RNA primase, and nucleoprotein, undergo frequent mutations. These mutations are critical for vaccine development in disease control.
The recent global surge in COVID-19 infections has been fueled by new SARS-CoV-2 variants, namely Alpha, Beta, Gamma, Delta, etc. The molecular mechanism underlying such surge is elusive due to 4,653 non-degenerate mutations on the spike protein, whi ch is the target of most COVID-19 vaccines. The understanding of the molecular mechanism of transmission and evolution is a prerequisite to foresee the trend of emerging vaccine-breakthrough variants and the design of mutation-proof vaccines and monoclonal antibodies. We integrate the genotyping of 1,489,884 SARS-CoV-2 genomes isolates, 130 human antibodies, tens of thousands of mutational data points, topological data analysis, and deep learning to reveal SARS-CoV-2 evolution mechanism and forecast emerging vaccine-escape variants. We show that infectivity-strengthening and antibody-disruptive co-mutations on the S protein RBD can quantitatively explain the infectivity and virulence of all prevailing variants. We demonstrate that Lambda is as infectious as Delta but is more vaccine-resistant. We analyze emerging vaccine-breakthrough co-mutations in 20 countries, including the United Kingdom, the United States, Denmark, Brazil, and Germany, etc. We envision that natural selection through infectivity will continue to be the main mechanism for viral evolution among unvaccinated populations, while antibody disruptive co-mutations will fuel the future growth of vaccine-breakthrough variants among fully vaccinated populations. Finally, we have identified the co-mutations that have the great likelihood of becoming dominant: [A411S, L452R, T478K], [L452R, T478K, N501Y], [V401L, L452R, T478K], [K417N, L452R, T478K], [L452R, T478K, E484K, N501Y], and [P384L, K417N, E484K, N501Y]. We predict they, particularly the last four, will break through existing vaccines. We foresee an urgent need to develop new vaccines that target these co-mutations.
The SARS-CoV-2 spike (S) protein facilitates viral infection, and has been the focus of many structure determination efforts. This paper studies the conformations of loops in the S protein based on the available Protein Data Bank (PDB) structures. Lo ops, as flexible regions of the protein, are known to be involved in binding and can adopt multiple conformations. We identify the loop regions of the S protein, and examine their structural variability across the PDB. While most loops had essentially one stable conformation, 17 of 44 loop regions were observed to be structurally variable with multiple substantively distinct conformations. Loop modeling methods were then applied to the S protein loop targets, and loops with multiple conformations were found to be more challenging for the methods to predict accurately. Sequence variants and the up/down structural states of the receptor binding domain were also considered in the analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا