ﻻ يوجد ملخص باللغة العربية
The dynamical evolution of an inhomogeneous ultracold atomic gas quenched at different controllable rates through the Bose-Einstein condensation phase transition is studied numerically in the premise of a recent experiment in an anisotropic harmonic trap. Our findings based on the stochastic (projected) Gross-Pitaevskii equation are shown to be consistent at early times with the predictions of the homogeneous Kibble-Zurek mechanism. This is demonstrated by collapsing the early dynamical evolution of densities, spectral functions and correlation lengths for different quench rates, based on an appropriate characterization of the distance to criticality felt by the quenched system. The subsequent long-time evolution, beyond the identified dynamical critical region, is also investigated by looking at the behaviour of the density wavefront evolution and the corresponding phase ordering dynamics.
We show that there exists the inverse Kibble-Zurek scenario, when we start with an equilibrium system with broken symmetry and, by imposing perturbations, transform it to a strongly nonequilibrium symmetric state through the sequence of states with s
When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mo
Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topologically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by quenching a Bose gas to degeneracy in this g
We experimentally study the energy-temperature relationship of a harmonically trapped Bose-Einstein condensate by transferring a known quantity of energy to the condensate and measuring the resulting temperature change. We consider two methods of hea