ﻻ يوجد ملخص باللغة العربية
We investigate the causal effects of drug exposure on birth defects, motivated by a recent cohort study of birth outcomes in pregnancies of women treated with a given medication, that revealed a higher rate of major structural birth defects in infants born to exposed versus unexposed women. An outstanding problem in this study was the missing birth defect outcomes among pregnancy losses resulting from spontaneous abortion. This led to missing not at random because, according to the theory of terathanasia, a defected fetus is more likely to be spontaneously aborted. In addition, the previous analysis stratified on live birth against spontaneous abortion, which was itself a post-exposure variable and hence did not lead to causal interpretation of the stratified results. In this paper we aimed to estimate and provide inference for the causal parameters of scientific interest, including the principal effects, making use of the missing data mechanism informed by terathanasia. During this process we also dealt with complications in the data including left truncation, observational nature, and rare events. We report our findings which shed light on how studies on causal effects of medication or other exposures during pregnancy may be analyzed.
The sex ratio at birth (SRB) in India has been reported imbalanced since the 1970s. Previous studies have shown a great variation in the SRB across geographic locations in India till 2016. As one of the most populous countries and in view of its grea
Our work was motivated by a recent study on birth defects of infants born to pregnant women exposed to a certain medication for treating chronic diseases. Outcomes such as birth defects are rare events in the general population, which often translate
Since December 2019, the world has been witnessing the gigantic effect of an unprecedented global pandemic called Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) - COVID-19. So far, 38,619,674 confirmed cases and 1,093,522 confirmed deaths
We develop a distribution-free, unsupervised anomaly detection method called ECAD, which wraps around any regression algorithm and sequentially detects anomalies. Rooted in conformal prediction, ECAD does not require data exchangeability but approxim
Patients with Acute Kidney Injury (AKI) increase mortality, morbidity, and long-term adverse events. Therefore, early identification of AKI may improve renal function recovery, decrease comorbidities, and further improve patients survival. To control