ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct measurement of interfacial Dzyaloshinskii-Moriya interaction at the MoS$_{rm 2}$/Ni$_{80}$Fe$_{20}$ interface

121   0   0.0 ( 0 )
 نشر من قبل Pranaba Muduli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a direct measurement of sizable interfacial Dzyaloshinskii-Moriya interaction (iDMI) at the interface of two-dimensional transition metal dichalcogenide (2D-TMD), MoS$_{rm 2}$ and Ni$_{80}$Fe$_{20}$ (Py) using Brillouin light scattering spectroscopy. A clear asymmetry in spin-wave dispersion is measured in MoS$_{rm 2}$/Py/Ta, while no such asymmetry is detected in the reference Py/Ta system. A linear scaling of the DMI constant with the inverse of Py thickness indicates the interfacial origin of the observed DMI. We further observe an enhancement of DMI constant in three to four layer MoS$_{rm 2}$/Py system (by 56$%$) as compared to 2 layer MoS$_{rm 2}$/Py which is caused by a higher density of MoO$_{rm 3}$ defect species in the case of three to four layer MoS$_{rm 2}$. The results open possibilities of spin-orbitronic applications utilizing the 2D-TMD based heterostructures.

قيم البحث

اقرأ أيضاً

Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
We fabricate large-area atomically thin MoS$_2$ layers through the direct transformation of crystalline molybdenum MoS$_2$ (MoO$_3$) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-cryst al domain size) with areas of up to 300x300 um$^2$ with 2-4 layers in thickness and show a marked p-type behaviour. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.
We investigated spin wave (SW) propagation and emission in thin film systems with strong interfacial Dzyaloshinskii-Moriya interaction (DMI) utilizing micromagnetic simulation. The effect of DMI on SW propagation is analogous to the flow of magnetic medium leading to the spin Doppler effect, and a spin-polarized current can enhance or suppress it. It is demonstrated that, for a Doppler velocity exceeding a critical value, a shock-wave-like emission of SWs with a cone-shape emerges from a magnetically irregular point as the cone apex. The cone angle is quantitatively determined by the DMI-induced Doppler velocity. Combining the interfacial DMI and the spin-polarized current, a constant SW emission by a static source is demonstrated, which provides a promising route to efficiently generate SWs with tunable frequency.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the ca pability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO2 vs BaO), from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at the oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is two times larger than that of the TiO2-BTO/CoFeB, while the DMI of the TiO2-BTO/CoFeB interface is larger. We explain the observed phenomena by first-principles calculations, which ascribe them to the different electronic states around the Fermi level at the oxide/ferromagnetic metal interfaces and the different spin-flip processes. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast mo tion of chiral textures, i.e., Neel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption and high processing speed. We have engineered epitaxial structures where an epitaxial ferromagnetic Co layer is sandwiched between an epitaxial Pt(111) buffer grown in turn onto MgO(111) substrates and a graphene layer. We provide evidence of a graphene-induced enhancement of the perpendicular magnetic anisotropy up to 4 nm thick Co films, and of the existence of chiral left-handed Neel-type domain walls stabilized by the effective Dzyaloshinskii-Moriya interaction (DMI) in the stack. The experiments show evidence of a sizeable DMI at the gr/Co interface, which is described in terms of a conduction electron mediated Rashba-DMI mechanism and points opposite to the Spin Orbit Coupling-induced DMI at the Co/Pt interface. In addition, the presence of graphene results in: i) a surfactant action for the Co growth, producing an intercalated, flat, highly perfect fcc film, pseudomorphic with Pt and ii) an efficient protection from oxidation. The magnetic chiral texture is stable at room temperature and grown on insulating substrate. Our findings open new routes to control chiral spin structures using interfacial engineering in graphene-based systems for future spin-orbitronics devices fully integrated on oxide substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا