ﻻ يوجد ملخص باللغة العربية
In this Letter we constrain for the first time both cosmology and modified gravity theories conjointly, by combining the GW and electromagnetic observations of GW170817. We provide joint posterior distributions for the Hubble constant $H_0$, and two physical effects typical of modified gravity: the gravitational wave (GW) friction, encoded by the parameter $alpha_M$, and several GW dispersion relations. Among the results of this analysis, we can improve by 15% the bound of the graviton mass with respect to measurement using the same event, but fixing $H_0$. We obtain a value of $m^2_g=2.08_{-4.25}^{+13.90} cdot 10^{-44} rm{eV^2/c^4}$ at 99.7% confidence level (CL), when marginalising over the Hubble constant and GW friction term $alpha_M$. We find poor constraints on $alpha_M$, but demonstrate that for all the GW dispersions relations considered, including massive gravity, the GW must be emitted $sim$ 1.74s before the Gamma-ray burst (GRB). Furthermore, at the GW merger peak frequency, we show that the fractional difference between the GW group velocity and $c$ is $lesssim 10^{-17}$.
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+al
In this work we present a brief discussion about modified and extended cosmological models using current observational tests. We show that according to these astrophysical samples based in late universe measurements, theories like $f(R)$ and $f(T,B)$
Recently, Kenna-Allison et.al. claimed that bimetric gravity cannot give rise to a viable cosmological expansion history while at the same time being compatible with local gravity tests. In this note we review that claim and combine various results f
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally eithe
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been