ترغب بنشر مسار تعليمي؟ اضغط هنا

Antisymmetry: Fundamentals and Applications

45   0   0.0 ( 0 )
 نشر من قبل Haricharan Padmanabhan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Symmetry is fundamental to understanding our physical world. An antisymmetry operation switches between two different states of a trait, such as two time-states, position-states, charge-states, spin-states, chemical-species etc. This review covers the fundamental concepts of antisymmetry, and focuses on four antisymmetries, namely spatial inversion in point groups, time reversal, distortion reversal and wedge reversion. The distinction between classical and quantum mechanical descriptions of time reversal is presented. Applications of these antisymmetries in crystallography, diffraction, determining the form of property tensors, classifying distortion pathways in transition state theory, finding minimum energy pathways, diffusion, magnetic structures and properties, ferroelectric and multiferroic switching, classifying physical properties in arbitrary dimensions, and antisymmetry-protected topological phenomena are presented.

قيم البحث

اقرأ أيضاً

Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diversity of chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N2, the number of predicted nitride compounds dwarfs those that have been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise.
The family of MAX phases and their derivative MXenes are continuously growing in terms of both crystalline and composition varieties. In the last couple of years, several breakthroughs have been achieved that boosted the synthesis of novel MAX phases with ordered double transition metals and, consequently, the synthesis of novel MXenes with a higher chemical diversity and structural complexity, rarely seen in other families of two-dimensional (2D) materials. Considering the various elemental composition possibilities, surface functional tunability, various magnetic orders, and large spin$-$orbit coupling, MXenes can truly be considered as multifunctional materials that can be used to realize highly correlated phenomena. In addition, owing to their large surface area, hydrophilicity, adsorption ability, and high surface reactivity, MXenes have attracted attention for many applications, e.g., catalysts, ion batteries, gas storage media, and sensors. Given the fast progress of MXene-based science and technology, it is timely to update our current knowledge on various properties and possible applications. Since many theoretical predictions remain to be experimentally proven, here we mainly emphasize the physics and chemistry that can be observed in MXenes and discuss how these properties can be tuned or used for different applications.
Distortions are ubiquitous in nature. Under perturbations such as stresses, fields, or other changes, a physical system reconfigures by following a path from one state to another; this path, often a collection of atomic trajectories, describes a dist ortion. Here we introduce an antisymmetry operation called distortion reversal, 1*, that reverses a distortion pathway. The symmetry of a distortion pathway is then uniquely defined by a distortion group involving 1*; it has the same form as a magnetic group that involves time reversal, 1. Given its isomorphism to magnetic groups, distortion groups could potentially have commensurate impact in the study of distortions as the magnetic groups have had in the study of magnetic structures. Distortion symmetry has important implications for a range of phenomena such as structural and electronic phase transitions, diffusion, molecular conformational changes, vibrations, reaction pathways, and interface dynamics.
Rotation-reversal symmetry was recently introduced to generalize the symmetry classification of rigid static rotations in crystals such as tilted octahedra in perovskite structures and tilted tetrahedral in silica structures. This operation has impor tant implications for crystallographic group theory, namely that new symmetry groups are necessary to properly describe observations of rotation-reversal symmetry in crystals. When both rotation-reversal symmetry and time-reversal symmetry are considered in conjunction with space group symmetry, it is found that there are 17,803 types of symmetry, called double antisymmetry, which a crystal structure can exhibit. These symmetry groups have the potential to advance understanding of polyhedral rotations in crystals, the magnetic structure of crystals, and the coupling thereof. The full listing of the double antisymmetry space groups can be found in the supplemental materials of the present work and online at our website: http://sites.psu.edu/gopalan/research/symmetry/
Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to peoples daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theorys basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا