ترغب بنشر مسار تعليمي؟ اضغط هنا

The H$_2$O Spectrum of the Massive Protostar AFGL 2136 IRS 1 from 2 to 13 $mu$m at High Resolution: Probing the Circumstellar Disk

76   0   0.0 ( 0 )
 نشر من قبل Nick Indriolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed the massive protostar AFGL 2136 IRS 1 in multiple wavelength windows in the near-to-mid-infrared at high ($sim3$ km s$^{-1}$) spectral resolution using VLT+CRIRES, SOFIA+EXES, and Gemini North+TEXES. There is an abundance of H$_2$O absorption lines from the $ u_1$ and $ u_3$ vibrational bands at 2.7 $mu$m, from the $ u_2$ vibrational band at 6.1 $mu$m, and from pure rotational transitions near 10-13 $mu$m. Analysis of state-specific column densities derived from the resolved absorption features reveals that an isothermal absorbing slab model is incapable of explaining the relative depths of different absorption features. In particular, the strongest absorption features are much weaker than expected, indicating optical depth effects resulting from the absorbing gas being well-mixed with the warm dust that serves as the background continuum source at all observed wavelengths. The velocity at which the strongest H$_2$O absorption occurs coincides with the velocity centroid along the minor axis of the compact disk in Keplerian rotation recently observed in H$_2$O emission with ALMA. We postulate that the warm regions of this dust disk dominate the continuum emission at near-to-mid infrared wavelengths, and that H$_2$O and several other molecules observed in absorption are probing this disk. Absorption line profiles are not symmetric, possibly indicating that the warm dust in the disk that produces the infrared continuum has a non-uniform distribution similar to the substructure observed in 1.3 mm continuum emission.

قيم البحث

اقرأ أيضاً

Deuterated interstellar molecules frequently have abundances relative to their main isotopologues much higher than the overall elemental D-to-H ratio in the cold dense interstellar medium. The H$_3^+$ and its isotopologues play a key role in the deut erium fractionation; however, the abundances of these isotopologues have not been measured empirically with respect to H$_3^+$ to date. Our aim was to constrain the relative abundances of H$_2$D$^+$ and D$_3^+$ in the cold outer envelope of the hot core CRL 2136 IRS 1. We carried out three observations targeting H$_3^+$ and its isotopologues using the spectrographs CRIRES at the VLT, iSHELL at IRTF, and EXES on board SOFIA. In addition, the CO overtone band at 2.3 $mu$m was observed by iSHELL to characterize the gas on the line of sight. The H$_3^+$ ion was detected toward CRL 2136 IRS 1 as in previous observations. Spectroscopy of lines of H$_2$D$^+$ and D$_3^+$ resulted in non-detections. The 3$sigma$ upper limits of $N({rm H_2D^+})/N({rm H_3^+})$ and $N({rm D_3^+})/N({rm H_3^+})$ are 0.24 and 0.13, respectively. The population diagram for CO is reproduced by two components of warm gas with the temperatures 58 K and 530 K, assuming a local thermodynamic equilibrium (LTE) distribution of the rotational levels. Cold gas ($<$20 K) makes only a minor contribution to the CO molecular column toward CRL 2136 IRS 1. The critical conditions for deuterium fractionation in a dense cloud are low temperature and CO depletion. Given the revised cloud properties, it is no surprise that H$_3^+$ isotopologues are not detected toward CRL 2136 IRS 1. The result is consistent with our current understanding of how deuterium fractionation proceeds.
HH 50138 is one of the brightest B[e] stars at a distance of $sim$ 380 pc with strong infrared excess. The star was observed in [O I] 63 $mu$m and [C II] 158 $mu$m with high velocity resolution with upGREAT on SOFIA. The velocity resolved [O I] emiss ion provides evidence for a large gas-disk, $sim$ 760 au in size, around HD 50138. Whereas previous interferometric observations give strong evidence for a hot gas and dust disk in Keplerian rotation, our bservations are the first to provide unambiguous evidence for a large warm disk around the star. Herschel/PACS observations showed that the [C II] emission is extended, therefore the [C II] emission most likely originates in an ionized gas shell created by a past outflow event. We confirm the isolated nature of HD 50138. It is far from any star forming region and has low proper motion. Neither is there any sign of a remnant cloud from which it could have formed. The extended disk around the star appears carbon poor. It shows OH and [O I] emission, but no CO. The CO abundance appears to be at least an order of magnitude lower than that of OH. Furthermore $^{13}$CO is enriched by more than a factor of five, confirming that the star is not a Herbig Be star. Finally we note that our high spectral resolution [O I] and [C II] observations provide a very accurate heliocentric velocity of the star, 40.8 $pm$ 0.2 km~s$^{-1}$.
We present the first resolved observations of the 1.3mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting an uniform morphology of p olarization vectors with an average position angle of 57 degrees and an average polarization fraction of 2.0%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produce the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 10000 years of high-mass star formation, grain sizes can grow from 1 to several 10s micron.
Symbiotic stars (SySt) are binaries composed of a star in the later stages of evolution and a stellar remnant. The enhanced mass-loss from the giant drives interacting mass exchange and makes these systems laboratories for understanding binary evolut ion. Studies of the chemical compositions are particularly useful since this parameter has strong impact on the evolutionary path. The previous paper in this series presented photospheric abundances for 24 giants in S-type SySt enabling a first statistical analysis. Here we present results for an additional sample of 13 giants. The aims are to improve statistics of chemical composition involved in the evolution of SySt, to study evolutionary status, mass transfer and to interpret this in terms of Galactic populations. High-resolution, near-IR spectra are used, employing the spectrum synthesis method in a classical approach, to obtain abundances of CNO and elements around the iron peak (Fe, Ti, Ni). Low-resolution spectra in the region around the Ca II triplet were used for spectral classification. The metallicities obtained cover a wide range with a maximum around ~-0.2 dex. The enrichment in the 14N isotope indicates that these giants have experienced the first dredge-up. Relative O and Fe abundances indicate that most SySt belong to the Galactic disc; however, in a few cases, the extended thick-disc/halo is suggested. Difficult to explain, relatively high Ti abundances can indicate that adopted microturbulent velocities were too small by ~0.2-0.3 km/s. The revised spectral types for V2905 Sgr, and WRAY 17-89 are M3 and M6.5, respectively.
68 - Luis A. Zapata 2019
During the last decades, a great interest has emerged to know if even the most massive stars in our galaxy (namely the spectral O-type stars) are formed in a similar manner as the low- and intermediate-mass stars, that is, through the presence of acc reting disks and powerful outflows. Here, using sensitive observations of the Atacama Large Millimeter/Submillimeter Array (ALMA), we report a resolved Keplerian disk (with fifteen synthesized beams across its major axis) surrounding the deeply embedded O-type protostar IRAS16547$-$4247. The disk shows some asymmetries that could arise because of the disk is unstable and fragmenting or maybe because of different excitation conditions within the disk. The enclosed mass estimated from the disk Keplerian radial velocities is 25$pm$3 M$_odot$. The molecular disk is at the base of an ionized thermal radio jet and is approximately perpendicular to the jet axis orientation. We additionally find the existence of a binary system of compact dusty objects at the center of the accreting disk, which indicates the possible formation of an O-type star and a companion of lower mass. This is not surprising due to the high binary fraction reported in massive stars. Subtracting the contribution of the dusty disk plus the envelope and the companion, we estimated a mass of 20 M$_odot$ for the central star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا