ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Erasure Coding Techniques for High Availability of Intermediate Data

86   0   0.0 ( 0 )
 نشر من قبل Zhe Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientific computing workflows generate enormous distributed data that is short-lived, yet critical for job completion time. This class of data is called intermediate data. A common way to achieve high data availability is to replicate data. However, an increasing scale of intermediate data generated in modern scientific applications demands new storage techniques to improve storage efficiency. Erasure Codes, as an alternative, can use less storage space while maintaining similar data availability. In this paper, we adopt erasure codes for storing intermediate data and compare its performance with replication. We also use the metric of Mean-Time-To-Data-Loss (MTTDL) to estimate the lifetime of intermediate data. We propose an algorithm to proactively relocate data redundancy from vulnerable machines to reliable ones to improve data availability with some extra network overhead. Furthermore, we propose an algorithm to assign redundancy units of data physically close to each other on the network to reduce the network bandwidth for reconstructing data when it is being accessed.



قيم البحث

اقرأ أيضاً

Large-scale systems with all-flash arrays have become increasingly common in many computing segments. To make such systems resilient, we can adopt erasure coding such as Reed-Solomon (RS) code as an alternative to replication because erasure coding i ncurs a significantly lower storage overhead than replication. To understand the impact of using erasure coding on the system performance and other system aspects such as CPU utilization and network traffic, we build a storage cluster that consists of approximately 100 processor cores with more than 50 high-performance solid-state drives (SSDs), and evaluate the cluster with a popular open-source distributed parallel file system, called Ceph. Specifically, we analyze the behaviors of a system adopting erasure coding from the following five viewpoints, and compare with those of another system using replication: (1) storage system I/O performance; (2) computing and software overheads; (3) I/O amplification; (4) network traffic among storage nodes, and (5) impact of physical data layout on performance of RS-coded SSD arrays. For all these analyses, we examine two representative RS configurations, used by Google file systems, and compare them with triple replication employed by a typical parallel file system as a default fault tolerance mechanism. Lastly, we collect 96 block-level traces from the cluster and release them to the public domain for the use of other researchers.
To achieve reliability in distributed storage systems, data has usually been replicated across different nodes. However the increasing volume of data to be stored has motivated the introduction of erasure codes, a storage efficient alternative to rep lication, particularly suited for archival in data centers, where old datasets (rarely accessed) can be erasure encoded, while replicas are maintained only for the latest data. Many recent works consider the design of new storage-centric erasure codes for improved repairability. In contrast, this paper addresses the migration from replication to encoding: traditionally erasure coding is an atomic operation in that a single node with the whole object encodes and uploads all the encoded pieces. Although large datasets can be concurrently archived by distributing individual object encodings among different nodes, the network and computing capacity of individual nodes constrain the archival process due to such atomicity. We propose a new pipelined coding strategy that distributes the network and computing load of single-object encodings among different nodes, which also speeds up multiple object archival. We further present RapidRAID codes, an explicit family of pipelined erasure codes which provides fast archival without compromising either data reliability or storage overheads. Finally, we provide a real implementation of RapidRAID codes and benchmark its performance using both a cluster of 50 nodes and a set of Amazon EC2 instances. Experiments show that RapidRAID codes reduce a single objects coding time by up to 90%, while when multiple objects are encoded concurrently, the reduction is up to 20%.
In a distributed storage system, code symbols are dispersed across space in nodes or storage units as opposed to time. In settings such as that of a large data center, an important consideration is the efficient repair of a failed node. Efficient rep air calls for erasure codes that in the face of node failure, are efficient in terms of minimizing the amount of repair data transferred over the network, the amount of data accessed at a helper node as well as the number of helper nodes contacted. Coding theory has evolved to handle these challenges by introducing two new classes of erasure codes, namely regenerating codes and locally recoverable codes as well as by coming up with novel ways to repair the ubiquitous Reed-Solomon code. This survey provides an overview of the efforts in this direction that have taken place over the past decade.
Dealing with hardware and software faults is an important problem as parallel and distributed systems scale to millions of processing cores and wide area networks. Traditional methods for dealing with faults include checkpoint-restart, active replica s, and deterministic replay. Each of these techniques has associated resource overheads and constraints. In this paper, we propose an alternate approach to dealing with faults, based on input augmentation. This approach, which is an algorithmic analog of erasure coded storage, applies a minimally modified algorithm on the augmented input to produce an augmented output. The execution of such an algorithm proceeds completely oblivious to faults in the system. In the event of one or more faults, the real solution is recovered using a rapid reconstruction method from the augmented output. We demonstrate this approach on the problem of solving sparse linear systems using a conjugate gradient solver. We present input augmentation and output recovery techniques. Through detailed experiments, we show that our approach can be made oblivious to a large number of faults with low computational overhead. Specifically, we demonstrate cases where a single fault can be corrected with less than 10% overhead in time, and even in extreme cases (fault rates of 20%), our approach is able to compute a solution with reasonable overhead. These results represent a significant improvement over the state of the art.
Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durabi lity and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا