ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of economic segregation from mobility lockdown during COVID-19 epidemic

98   0   0.0 ( 0 )
 نشر من قبل Walter Quattrociocchi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In response to the COVID-19 pandemic, National governments have applied lockdown restrictions to reduce the infection rate. We perform a massive analysis on near real-time Italian data provided by Facebook to investigate how lockdown strategies affect economic conditions of individuals and local governments. We model the change in mobility as an exogenous shock similar to a natural disaster. We identify two ways through which mobility restrictions affect Italian citizens. First, we find that the impact of lockdown is stronger in municipalities with higher fiscal capacity. Second, we find a segregation effect, since mobility restrictions are stronger in municipalities for which inequality is higher and where individuals have lower income per capita.



قيم البحث

اقرأ أيضاً

While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the te mporal changes in human mobility behavior, social contact rates, and their correlations with the transmissibility of COVID-19, using mobility data collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 50%, resulting in a 70% reduction of social contacts in Tokyo, showing the effectiveness of non-compulsory measures. Furthermore, the reduction in data-driven human mobility metrics showed correlation with the decrease in estimated effective reproduction number of COVID-19 in Tokyo. Such empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to contain the disease.
Context. The lockdown orders established in multiple countries in response to the Covid-19 pandemics are arguably one of the most widespread and deepest shock experienced by societies in recent years. Studying their impact trough the lens of social m edia offers an unprecedented opportunity to understand the susceptibility and the resilience of human activity patterns to large-scale exogenous shocks. Firstly, we investigate the changes that this upheaval has caused in online activity in terms of time spent online, themes and emotion shared on the platforms, and rhythms of content consumption. Secondly, we examine the resilience of certain platform characteristics, such as the daily rhythms of emotion expression. Data. Two independent datasets about the French cyberspace: a fine-grained temporal record of almost 100 thousand YouTube videos and a collection of 8 million Tweets between February 17 and April 14, 2020. Findings. In both datasets we observe a reshaping of the circadian rhythms with an increase of night activity during the lockdown. The analysis of the videos and tweets published during lockdown shows a general decrease in emotional contents and a shift from themes like work and money to themes like death and safety. However, the daily patterns of emotions remain mostly unchanged, thereby suggesting that emotional cycles are resilient to exogenous shocks.
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for the New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough moment for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in peoples mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
Since the beginning of the COVID-19 spreading, the number of studies on the epidemic models increased dramatically. It is important for policy makers to know how the disease will spread, and what are the effects of the policies and environment on the spreading. In this paper, we propose two extensions to the standard infectious disease models: (a) We consider the prevention measures adopted based on the current severity of the infection, those measures are adaptive and change over time. (b) Multiple cities and regions are considered, with population movements between those cities/regions, while taking into account that each region may have different prevention measures. While the adaptive measures and mobility of the population were often observed during the pandemic, these effects are rarely explicitly modeled and studied in the classical epidemic models. The model we propose gives rise to a plateau phenomenon: the number of people infected by the disease stay at the same level during an extended period of time. We show what are conditions needs to be met in order for the spreading to exhibit a plateau period, and we show that this phenomenon is interdependent: when considering multiples cities, the conditions are different from a single city. We verify from the real-world data that plateau phenomenon does exists in many regions of the world in the current COVID-19 development. Finally, we provide theoretical analysis on the plateau phenomenon for the single-city model, and derive a series of results on the emergence and ending of the plateau, and on the height and length of the plateau. Our theoretical results match well with our empirical findings.
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though a lmost all the countries in the world in a short period of time. With humans as the carrier of the virus, the spreading process necessarily depends on the their mobility after being infected. Not only in the primary spreading process, but also in the subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed, by various countries both nationally and internationally. On the other hand, these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised on a global scale, with multiple changing variables. Here we review the techniques and their effects on optimization or proposed optimizations of human mobility in different scales, carried out by data driven, machine learning and model approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا