ﻻ يوجد ملخص باللغة العربية
In response to the COVID-19 pandemic, National governments have applied lockdown restrictions to reduce the infection rate. We perform a massive analysis on near real-time Italian data provided by Facebook to investigate how lockdown strategies affect economic conditions of individuals and local governments. We model the change in mobility as an exogenous shock similar to a natural disaster. We identify two ways through which mobility restrictions affect Italian citizens. First, we find that the impact of lockdown is stronger in municipalities with higher fiscal capacity. Second, we find a segregation effect, since mobility restrictions are stronger in municipalities for which inequality is higher and where individuals have lower income per capita.
While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the te
Context. The lockdown orders established in multiple countries in response to the Covid-19 pandemics are arguably one of the most widespread and deepest shock experienced by societies in recent years. Studying their impact trough the lens of social m
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple
Since the beginning of the COVID-19 spreading, the number of studies on the epidemic models increased dramatically. It is important for policy makers to know how the disease will spread, and what are the effects of the policies and environment on the
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though a