The upper and lower Assouad dimensions of a metric space are local variants of the box dimensions of the space and provide quantitative information about the `thickest and `thinnest parts of the set. Less extre
We introduce a probability distribution on $mathcal{P}([0,1]^d)$, the space of all Borel probability measures on $[0,1]^d$. Under this distribution, almost all measures are shown to have infinite upper quasi-Assouad dimension and zero lower quasi-Ass
ouad dimension (hence the upper and lower Assouad dimensions are almost surely infinite or zero). We also indicate how the results extend to other Assouad-like dimensions.
In this article we show how ideas, methods and results from optimal transportation can be used to study various aspects of the stationary measuresof Iterated Function Systems equipped with a probability distribution. We recover a classical existence
and uniqueness result under a contraction-on-average assumption, prove generalized moment bounds from which tail estimates can be deduced, consider the convergence of the empirical measure of an associated Markov chain, and prove in many cases the Lipschitz continuity of the stationary measure when the system is perturbed, with as a consequence a linear response formula at almost every parameter of the perturbation.
We adapt Guths polynomial partitioning argument for the Fourier restriction problem to the context of the Kakeya problem. By writing out the induction argument as a recursive algorithm, additional multiscale geometric information is made available. T
o take advantage of this, we prove that direction-separated tubes satisfy a multiscale version of the polynomial Wolff axioms. Altogether, this yields improved bounds for the Kakeya maximal conjecture in $mathbb{R}^n$ with $n=5$ or $nge 7$ and improved bounds for the Kakeya set conjecture for an infinite sequence of dimensions.
We show that any equicontractive, self-similar measure arising from the IFS of contractions $(S_{j})$, with self-similar set $[0,1]$, admits an isolated point in its set of local dimensions provided the images of $S_{j}(0,1)$ (suitably) overlap and t
he minimal probability is associated with one (resp., both) of the endpoint contractions. Examples include $m$-fold convolution products of Bernoulli convolutions or Cantor measures with contraction factor exceeding $1/(m+1)$ in the biased case and $1/m$ in the unbiased case. We also obtain upper and lower bounds on the set of local dimensions for various Bernoulli convolutions.
We endow the set of probability measures on a weighted graph with a Monge--Kantorovich metric, induced by a function defined on the set of vertices. The graph is assumed to have $n$ vertices and so, the boundary of the probability simplex is an affin
e $(n-2)$--chain. Characterizing the geodesics of minimal length which may intersect the boundary, is a challenge we overcome even when the endpoints of the geodesics dont share the same connected components. It is our hope that this work would be a preamble to the theory of Mean Field Games on graphs.