ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Results for Implicit--Explicit General Linear Methods

129   0   0.0 ( 0 )
 نشر من قبل Adrian Sandu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Adrian Sandu




اسأل ChatGPT حول البحث

This paper studies fixed-step convergence of implicit-explicit general linear methods. We focus on a subclass of schemes that is internally consistent, has high stage order, and favorable stability properties. Classical, index-1 differential algebraic equation, and singular perturbation convergence analyses results are given. For all these problems IMEX GLMs from the class of interest converge with the full theoretical orders under general assumptions. The convergence results require the time steps to be sufficiently small, with upper bounds that are independent on the stiffness of the problem.


قيم البحث

اقرأ أيضاً

289 - S. Singh , S. Sircar 2019
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens ional (1D) linear advection diffusion reaction (ADR) equation: (a) An explicit (RK2) temporal integration combined with the Optimal Upwind Compact Scheme (or OUCS3) and the central difference scheme (CD2) for second order spatial discretization, (b) a fully implicit mid-point rule for time integration coupled with the OUCS3 and the Leles compact scheme for first and second order spatial discretization, respectively, (c) An implicit (mid-point rule)-explicit (RK2) or IMEX time integration blended with OUCS3 and Leles compact scheme (where the IMEX time integration follows the same ideology as introduced by Ascher et al.), and (d) the IMEX (mid-point/RK2) time integration melded with the New Combined Compact Difference scheme (or NCCD scheme). Analysis reveal the superior resolution features of the IMEX-NCCD scheme including an enhanced region of neutral stability (a region where the amplification factor is close to one), a diminished region of spurious propagation characteristics (or a region of negative group velocity) and a smaller region of nonzero phase speed error. The dispersion error of these numerical schemes through the role of q-waves is further investigated using the novel error propagation equation for the 1D linear ADR equation. Again, the in silico experiments divulge excellent Dispersion Relation Preservation (DRP) properties of the IMEX-NCCD scheme including minimal dissipation via implicit filtering and negligible unphysical oscillations (or Gibbs phenomena) on coarser grids.
We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convec tion and the source term may have very different time and space scales. As a consequence the nature of the asymptotic limit changes completely, passing from a hyperbolic to a parabolic system. From the computational point of view, standard numerical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the context of Implicit-Explicit linear multistep methods we construct high order space-time discretizations which are able to handle all the different scales and to capture the correct asymptotic behavior, independently from its nature, without time step restrictions imposed by the fast scales. Several numerical examples confirm the theoretical analysis.
Let $A$ be a real $ntimes n$ matrix and $z,bin mathbb R^n$. The piecewise linear equation system $z-Avert zvert = b$ is called an textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.
When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfie d by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. While the allowable time-step depends on both the spatial and temporal discretizations, the contribution of the temporal discretization can be isolated by taking the ratio of the allowable time-step of the high order method to the forward Euler time-step. This ratio is called the strong stability coefficient. The search for high order strong stability time-stepping methods with high order and large allowable time-step had been an active area of research. It is known that implicit SSP Runge-Kutta methods exist only up to sixth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge-Kutta methods of any linear order. In the current work we aim to find very high linear order implicit SSP Runge-Kutta methods that are optimal in terms of allowable time-step. Next, we formulate an optimization problem for implicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods with large linear stability regions that pair with known explicit SSP Runge-Kutta methods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairs that have high linear order and nonlinear orders p=2,3,4. These methods are then tested on sample problems to verify order of convergence and to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems.
Splitting is a method to handle application problems by splitting physics, scales, domain, and so on. Many splitting algorithms have been designed for efficient temporal discretization. In this paper, our goal is to use temporal splitting concepts in designing machine learning algorithms and, at the same time, help splitting algorithms by incorporating data and speeding them up. Since the spitting solution usually has an explicit and implicit part, we will call our method hybrid explicit-implict (HEI) learning. We will consider a recently introduced multiscale splitting algorithms. To approximate the dynamics, only a few degrees of freedom are solved implicitly, while others explicitly. In this paper, we use this splitting concept in machine learning and propose several strategies. First, the implicit part of the solution can be learned as it is more difficult to solve, while the explicit part can be computed. This provides a speed-up and data incorporation for splitting approaches. Secondly, one can design a hybrid neural network architecture because handling explicit parts requires much fewer communications among neurons and can be done efficiently. Thirdly, one can solve the coarse grid component via PDEs or other approximation methods and construct simpler neural networks for the explicit part of the solutions. We discuss these options and implement one of them by interpreting it as a machine translation task. This interpretation successfully enables us using the Transformer since it can perform model reduction for multiple time series and learn the connection. We also find that the splitting scheme is a great platform to predict the coarse solution with insufficient information of the target model: the target problem is partially given and we need to solve it through a known problem. We conduct four numerical examples and the results show that our method is stable and accurate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا