ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Measurement of the Electron Antineutrino Yield of U-235 Fissions from the STEREO Experiment with 119 Days of Reactor-On Data

243   0   0.0 ( 0 )
 نشر من قبل Stefan Schoppmann
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a measurement of the antineutrino rate from the fission of U-235 with the STEREO detector using 119 days of reactor turned on. In our analysis, we perform several detailed corrections and achieve the most precise single measurement at reactors with highly enriched U-235 fuel. We measure an IBD cross section per fission of $sigma_f$ = (6.34 $pm$ 0.06 [stat] $pm$ 0.15 [sys] $pm$ 0.15 [model]) $times$ 10${}^{-43}$ cm${}^{2}$/fission and observe a rate deficit of (5.2 $pm$ 0.8 [stat] $pm$ 2.3 [sys] $pm$ 2.3 [model])% compared to the model, consistent with the deficit of the world average. Testing U-235 as the sole source of the deficit, we find a tension between the results of lowly and highly enriched U-235 fuel of 2.1 standard deviations.

قيم البحث

اقرأ أيضاً

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $ov erline{ u}_{e}$s. Comparison of the $overline{ u}_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors ($sim$1500-1950 m) relative to detectors near the reactors ($sim$350-600 m) allowed a precise measurement of $overline{ u}_{e}$ disappearance. More than 2.5 million $overline{ u}_{e}$ inverse beta decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (Dec. 2011--Jul. 2012) with a subsequent 1013 days using the complete configuration of eight detectors (Oct. 2012--Jul. 2015). The $overline{ u}_{e}$ rate observed at the far detectors relative to the near detectors showed a significant deficit, $R=0.949 pm 0.002(mathrm{stat.}) pm 0.002(mathrm{syst.})$. The energy dependence of $overline{ u}_{e}$ disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle $sin^22theta_{13}=0.0841 pm 0.0027(mathrm{stat.}) pm 0.0019(mathrm{syst.})$ and the effective neutrino mass-squared difference of $left|{Delta}m^2_{mathrm{ee}}right|=(2.50 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$. Analysis using the exact three-flavor probability found ${Delta}m^2_{32}=(2.45 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$ assuming the normal neutrino mass hierarchy and ${Delta}m^2_{32}=(-2.56 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$ for the inverted hierarchy.
This article reports the measurement of the $^{235}$U-induced antineutrino spectrum shape by the STEREO experiment. 43000 antineutrinos have been detected at about 10 m from the highly enriched core of the ILL reactor during 118 full days equivalent at nominal power. The measured inverse beta decay spectrum is unfolded to provide a pure $^{235}$U spectrum in antineutrino energy. A careful study of the unfolding procedure, including a cross-validation by an independent framework, has shown that no major biases are introduced by the method. A significant local distortion is found with respect to predictions around $E_ u simeq 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of $A = 12.1 pm 3.4%$ (3.5$sigma$).
This Letter reports the first measurement of the $^{235}$U $overline{ u_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$pm$304 (stat.) $overline{ u_{e}}$-induced inverse beta decays (IBD), the largest sample from HEU fission to date, 99% of which are attributed to $^{235}$U. Despite broad agreement, comparison of the Huber $^{235}$U model to the measured spectrum produces a $chi^2/ndf = 51.4/31$, driven primarily by deviations in two localized energy regions. The measured $^{235}$U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the $overline{ u_{e}}$ energy region of 5-7MeV.
The reactor antineutrino anomaly might be explained by the oscillation of reactor antineutrinos toward a sterile neutrino of eV mass. In order to explore this hypothesis, the STEREO experiment measures the antineutrino energy spectrum in six differen t detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this Letter, results from 66 days of reactor turned on and 138 days of reactor turned off are reported. A novel method to extract the antineutrino rates has been developed based on the distribution of the pulse shape discrimination parameter. The test of a new oscillation toward a sterile neutrino is performed by comparing ratios of cells, independent of absolute normalization and of the prediction of the reactor spectrum. The results are found to be compatible with the null oscillation hypothesis and the best fit of the reactor antineutrino anomaly is excluded at 97.5% C.L.
The PROSPECT and STEREO collaborations present a combined measurement of the pure $^{235}$U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at research reactors are found to be compatible with $chi^2/mathrm{ndf} = 24.1/21$, allowing a joint unfolding of the prompt energy measurements into antineutrino energy. This $bar{ u}_e$ energy spectrum is provided to the community, and an excess of events relative to the Huber model is found in the 5-6 MeV region. When a Gaussian bump is fitted to the excess, the data-model $chi^2$ value is improved, corresponding to a $2.4sigma$ significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا