ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Competitive Analysis and High Accuracy Optimality of Profile Maximum Likelihood

77   0   0.0 ( 0 )
 نشر من قبل Yanjun Han
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A striking result of [Acharya et al. 2017] showed that to estimate symmetric properties of discrete distributions, plugging in the distribution that maximizes the likelihood of observed multiset of frequencies, also known as the profile maximum likelihood (PML) distribution, is competitive compared with any estimators regardless of the symmetric property. Specifically, given $n$ observations from the discrete distribution, if some estimator incurs an error $varepsilon$ with probability at most $delta$, then plugging in the PML distribution incurs an error $2varepsilon$ with probability at most $deltacdot exp(3sqrt{n})$. In this paper, we strengthen the above result and show that using a careful chaining argument, the error probability can be reduced to $delta^{1-c}cdot exp(cn^{1/3+c})$ for arbitrarily small constants $c>0$ and some constant $c>0$. In particular, we show that the PML distribution is an optimal estimator of the sorted distribution: it is $varepsilon$-close in sorted $ell_1$ distance to the true distribution with support size $k$ for any $n=Omega(k/(varepsilon^2 log k))$ and $varepsilon gg n^{-1/3}$, which are the information-theoretically optimal sample complexity and the largest error regime where the classical empirical distribution is sub-optimal, respectively. In order to strengthen the analysis of the PML, a key ingredient is to employ novel continuity properties of the PML distributions and construct a chain of suitable quantized PMLs, or coverings. We also construct a novel approximation-based estimator for the sorted distribution with a near-optimal concentration property without any sample splitting, where as a byproduct we obtain better trade-offs between the polynomial approximation error and the maximum magnitude of coefficients in the Poisson approximation of $1$-Lipschitz functions.



قيم البحث

اقرأ أيضاً

79 - Jesse Goodman 2020
The saddlepoint approximation gives an approximation to the density of a random variable in terms of its moment generating function. When the underlying random variable is itself the sum of $n$ unobserved i.i.d. terms, the basic classical result is t hat the relative error in the density is of order $1/n$. If instead the approximation is interpreted as a likelihood and maximised as a function of model parameters, the result is an approximation to the maximum likelihood estimate (MLE) that can be much faster to compute than the true MLE. This paper proves the analogous basic result for the approximation error between the saddlepoint MLE and the true MLE: subject to certain explicit identifiability conditions, the error has asymptotic size $O(1/n^2)$ for some parameters, and $O(1/n^{3/2})$ or $O(1/n)$ for others. In all three cases, the approximation errors are asymptotically negligible compared to the inferential uncertainty. The proof is based on a factorisation of the saddlepoint likelihood into an exact and approximate term, along with an analysis of the approximation error in the gradient of the log-likelihood. This factorisation also gives insight into alternatives to the saddlepoint approximation, including a new and simpler saddlepoint approximation, for which we derive analogous error bounds. As a corollary of our results, we also obtain the asymptotic size of the MLE error approximation when the saddlepoint approximation is replaced by the normal approximation.
We propose an efficient algorithm for approximate computation of the profile maximum likelihood (PML), a variant of maximum likelihood maximizing the probability of observing a sufficient statistic rather than the empirical sample. The PML has appeal ing theoretical properties, but is difficult to compute exactly. Inspired by observations gleaned from exactly solvable cases, we look for an approximate PML solution, which, intuitively, clumps comparably frequent symbols into one symbol. This amounts to lower-bounding a certain matrix permanent by summing over a subgroup of the symmetric group rather than the whole group during the computation. We extensively experiment with the approximate solution, and find the empirical performance of our approach is competitive and sometimes significantly better than state-of-the-art performance for various estimation problems.
The problem of astrometry is revisited from the perspective of analyzing the attainability of well-known performance limits (the Cramer-Rao bound) for the estimation of the relative position of light-emitting (usually point-like) sources on a CCD-lik e detector using commonly adopted estimators such as the weighted least squares and the maximum likelihood. Novel technical results are presented to determine the performance of an estimator that corresponds to the solution of an optimization problem in the context of astrometry. Using these results we are able to place stringent bounds on the bias and the variance of the estimators in close form as a function of the data. We confirm these results through comparisons to numerical simulations under a broad range of realistic observing conditions. The maximum likelihood and the weighted least square estimators are analyzed. We confirm the sub-optimality of the weighted least squares scheme from medium to high signal-to-noise found in an earlier study for the (unweighted) least squares method. We find that the maximum likelihood estimator achieves optimal performance limits across a wide range of relevant observational conditions. Furthermore, from our results, we provide concrete insights for adopting an adaptive weighted least square estimator that can be regarded as a computationally efficient alternative to the optimal maximum likelihood solution. We provide, for the first time, close-form analytical expressions that bound the bias and the variance of the weighted least square and maximum likelihood implicit estimators for astrometry using a Poisson-driven detector. These expressions can be used to formally assess the precision attainable by these estimators in comparison with the minimum variance bound.
In recent years, there is a growing need for processing methods aimed at extracting useful information from large datasets. In many cases the challenge is to discover a low-dimensional structure in the data, often concealed by the existence of nuisan ce parameters and noise. Motivated by such challenges, we consider the problem of estimating a signal from its scaled, cyclically-shifted and noisy observations. We focus on the particularly challenging regime of low signal-to-noise ratio (SNR), where different observations cannot be shift-aligned. We show that an accurate estimation of the signal from its noisy observations is possible, and derive a procedure which is proved to consistently estimate the signal. The asymptotic sample complexity (the number of observations required to recover the signal) of the procedure is $1/operatorname{SNR}^4$. Additionally, we propose a procedure which is experimentally shown to improve the sample complexity by a factor equal to the signals length. Finally, we present numerical experiments which demonstrate the performance of our algorithms, and corroborate our theoretical findings.
We consider the problem of identifying parameters of a particular class of Markov chains, called Bernoulli Autoregressive (BAR) processes. The structure of any BAR model is encoded by a directed graph. Incoming edges to a node in the graph indicate t hat the state of the node at a particular time instant is influenced by the states of the corresponding parental nodes in the previous time instant. The associated edge weights determine the corresponding level of influence from each parental node. In the simplest setup, the Bernoulli parameter of a particular nodes state variable is a convex combination of the parental node states in the previous time instant and an additional Bernoulli noise random variable. This paper focuses on the problem of edge weight identification using Maximum Likelihood (ML) estimation and proves that the ML estimator is strongly consistent for two variants of the BAR model. We additionally derive closed-form estimators for the aforementioned two variants and prove their strong consistency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا