ﻻ يوجد ملخص باللغة العربية
We discuss recent progress in the development of the three-fluid hydrodynamics-based program THESEUS towards an event generator suitable for applications to heavy-ion collisions at the intermediate energies of the planned NICA and FAIR experiments. We follow the strategy that modifications of particle distributions at the freeze-out surface in the QCD phase diagram may be mapped directly to the observable ones within a sudden freeze-out scheme. We report first results of these investigations for the production of light clusters (deuterons and tritons) which can be compared to experimental data from the HADES and the NA49 experiment and for the interpretation of the horn effect observed in the collision energy dependence of the $K^+/pi^+$ ratio. Medium effects on light cluster production in the QCD phase diagram are negligible at the highest NICA energies but shall play a dominant role at the lowest energies. A sharp horn-type signal in the $K^+/pi^+$ ratio can be obtained when the onset of Bose condensation modelled by a pion chemical potential results in an enhancement of pions at low momenta (which is seen at LHC energies) and would occur already in the NICA energy range.
Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global net strangeness of the detected hadrons has to vanish. We show that there is an intimate relation between strangeness neutrality and baryon-strangeness correlation
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and
We estimate the chemical freeze-out of light nuclear clusters for NICA energies of above 2 A GeV. On the one hand we use results from the low energy domain of about 35 A MeV, where medium effects have been shown to be important to explain experimenta
The chemical freeze-out irregularities found with the most advanced hadron resonance gas model and possible signals of two QCD phase transitions are discussed. We found that the center-of-mass collision energy range of tricritical endpoint of QCD pha
With the isovector coupling constants adjusted to reproduce the physical pion mass and lattice QCD results in baryon-free quark matter, we have carried out rigourous calculations for the pion condensate in the 3-flavor Nambu-Jona-Lasinio model, and s