ﻻ يوجد ملخص باللغة العربية
Neutral hydrogen has been shown to greatly impact the plasma flow in the heliopshere and the location of the heliospheric boundaries. We present the results of the Solar-wind with Hydrogen Ion Exchange and Large-scale Dynamics (SHIELD) model, a new, self-consistent, kinetic-MHD model of the outer heliosphere within the Space Weather Modeling Framework. The charge-exchange mean free path is on order of the size of the heliosphere; therefore, the neutral atoms cannot be described as a fluid. The SHIELD model couples the MHD solution for a single plasma fluid to the kinetic solution from for neutral hydrogen atoms streaming through the system. The kinetic code is based on the Adaptive Mesh Particle Simulator (AMPS), a Monte Carlo method for solving the Boltzmann equation. The SHIELD model accurately predicts the increased filtration of interstellar neutrals into the heliosphere. In order to verify the correct implementation within the model, we compare the results of the SHIELD model to other, well-established kinetic-MHD models. The SHIELD model matches the neutral hydrogen solution of these studies as well as the shift in all heliospheric boundaries closer to the Sun in comparison the the multi-fluid treatment of the neutral hydrogen atoms. Overall the SHIELD model shows excellent agreement to these models and is a significant improvement to the fluid treatment of interstellar hydrogen.
Simulation results from a global magnetohydrodynamic model of the solar corona and solar wind are compared with Parker Solar Probe (PSP) observations during its first five orbits. The fully three-dimensional model is based on Reynolds-averaged mean-f
The nature of the plasma wave modes around the ion kinetic scales in highly Alfvenic slow solar wind turbulence is investigated using data from the NASAs Parker Solar Probe taken in the inner heliosphere, at 0.18 Astronomical Unit (AU) from the sun.
The scaling of the turbulent spectra provides a key measurement that allows to discriminate between different theoretical predictions of turbulence. In the solar wind, this has driven a large number of studies dedicated to this issue using in-situ da
The anisotropy of solar wind turbulence is a critical issue in understanding the physics of energy transfer between scales and energy conversion between fields and particles in the heliosphere. Using the measurement of emph{Parker Solar Probe} (emph{
In this Letter we study the connection between the large-scale dynamics of the turbulence cascade and particle heating on kinetic scales. We find that the inertial range turbulence amplitude ($delta B_i$; measured in the range of 0.01-0.1 Hz) is a si