ﻻ يوجد ملخص باللغة العربية
Improving the efficiency and accuracy of energy calculations has been of significant and continued interest in the area of materials informatics, a field that applies machine learning techniques to computational materials data. Here, we present a heuristic quantum-classical algorithm to efficiently model and predict the energies of substitutionally disordered binary crystalline materials. Specifically, a quantum circuit that scales linearly in the number of lattice sites is designed and trained to predict the energies of quantum chemical simulations in an exponentially-scaling feature space. This circuit is trained by classical supervised-learning using data obtained from classically-computed quantum chemical simulations. As a part of the training process, we introduce a sub-routine that is able to detect and rectify anomalies in the input data. The algorithm is demonstrated on the complex layer-structured of Li-cobaltate system, a widely-used Li-ion battery cathode material component. Our results shows that the proposed quantum circuit model presents a suitable choice for modelling the energies obtained from such quantum mechanical systems. Furthermore, analysis of the anomalous data provides important insights into the thermodynamic properties of the systems studied.
We determine the complexity of several constraint satisfaction problems using the heuristic algorithm, WalkSAT. At large sizes N, the complexity increases exponentially with N in all cases. Perhaps surprisingly, out of all the models studied, the har
The focus of this paper is on the analysis of the Conjugate Gradient method applied to a non-symmetric system of linear equations, arising from a Fast Fourier Transform-based homogenization method due to (Moulinec and Suquet, 1994). Convergence of th
Hamiltonian learning is crucial to the certification of quantum devices and quantum simulators. In this paper, we propose a hybrid quantum-classical Hamiltonian learning algorithm to find the coefficients of the Pauli operator components of the Hamil
As molecular dynamics is increasingly used to characterize non-crystalline materials, it is crucial to verify that the numerical model is accurate enough, consistent with experimental data and can be used to extract various characteristics of disorde
Quantum embedding methods have become a powerful tool to overcome deficiencies of traditional quantum modelling in materials science. However while these can be accurate, they generally lack the ability to be rigorously improved and still often rely