ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate four-loop QCD corrections to the Higgs-boson production cross section

72   0   0.0 ( 0 )
 نشر من قبل Andreas Vogt
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف G. Das




اسأل ChatGPT حول البحث

We study the soft and collinear (SV) contributions to inclusive Higgs-boson production in gluon-gluon fusion at four loops. Using recent progress for the quark and gluon form factors and Mellin moments of splitting functions, we are able to complete the soft-gluon enhanced contributions exactly in the limit of a large number of colours, and to a sufficiently accurate numerical accuracy for QCD. The four-loop SV contributions increase the QCD cross section at 14 TeV by 2.7% and 0.2% for the standard choices mu_R=m_H and mu_R=m_H/2 of the renormalization scale, and reduce the scale uncertainty to below +-3%. As by-products, we derive the complete delta(1-x) term for the gluon-gluon splitting function at four loops and its purely Abelian contributions at five loops, and provide a numerical result for the single pole of the four-loop gluon form factor in dimensional regularization. Finally we present the closely related fourth-order coefficients D_4 for the soft-gluon exponentiation of Higgs-boson and Drell-Yan lepton-pair production.

قيم البحث

اقرأ أيضاً

In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general formula for the vertex correction which holds for conserved and non conserved operators. For the conserved operator we take the electromagnetic vertex correction as an example whereas for the non conserved operators we take the two vertex corrections above. Our observations for the structure of the pole terms $1/epsilon^4$, $1/epsilon^3$ and $1/epsilon^2$ in two loop order are the same as made earlier in the literature for electromagnetism. However we also elucidate the origin of the second order single pole term which is equal to the second order singular part of the anomalous dimension plus a universal function which is the same for the quark and the gluon. [3mm]
We discuss the next-to-next-to-leading order (NNLO) corrections to the total cross section for (pseudo-) scalar Higgs boson production. The computation is carried out in the effective Lagrangian approach which emerges from the standard model by takin g the limit $m_t to infty$ where $m_t$ denotes the mass of the top quark.
We report on the calculation of virtual processes contributing to the production of a Higgs boson and two jets in hadron-hadron collisions. The coupling of the Higgs boson to gluons, via a virtual loop of top quarks, is treated using an effective the ory, valid in the large top quark mass limit. The calculation is performed by evaluating one-loop diagrams in the effective theory. The primary method of calculation is a numerical evaluation of the virtual amplitudes as a Laurent series in $D-4$, where $D$ is the dimensionality of space-time. For the cases $H to qbar{q}qbar{q}$ and $H to qbar{q}qbar{q}$ we confirm the numerical results by an explicit analytic calculation.
We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for qu ark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to- leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.
Results are presented for the momentum dependent two-loop contributions of O(alpha_t alpha_s) to the masses and mixing effects in the Higgs sector of the MSSM. They are obtained in the Feynman-diagrammatic approach using a mixed on-shell/DRbar renorm alization that can directly be matched onto the higher-order corrections included in the code FeynHiggs. The new two-loop diagrams are evaluated with the program SecDec. The combination of the new momentum dependent two-loop contribution with the existing one- and two-loop corrections in the on-shell/DRbar scheme leads to an improved prediction of the light MSSM Higgs boson mass and a correspondingly reduced theoretical uncertainty. We find that the corresponding shifts in the lightest Higgs-boson mass M_h are below 1 GeV in all scenarios considered, but can extend up to the level of the current experimental uncertainty. The results are included in the code FeynHiggs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا