ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana Bound State leakage to impurity in Su-Schrieffer-Heeger-Rashba scenario

245   0   0.0 ( 0 )
 نشر من قبل Aksel Kobia{\\l}ka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show anomalous features of Majorana Bound State leakage in the situation where topological Rashba nanowire is dimerized according to the Su-Schrieffer-Heeger (SSH) scenario and an impurity is present at one of the ends of the system. We find that two topological branches: usual, indigenous to Rashba nanowire and dimerized one, existing as a result of SSH dimerization of nanowire, have different asymmetry of spin polarization that can be explained by opposite order of bands taking part in topological transitions. Additionally, introduction of an impurity to the dimerized nanowire influences the leakage of Majorana bound states into the trivial impurity, due to the emergence of Andreev bound states that behave differently whether the system is or is not in topological phase. This results in the pinning of zero energy states to the impurity site for some range of parameters.



قيم البحث

اقرأ أيضاً

Topological physics strongly relies on prototypical lattice model with particular symmetries. We report here on a theoretical and experimental work on acoustic waveguides that is directly mapped to the one-dimensional Su-Schrieffer-Heeger chiral mode l. Starting from the continuous two dimensional wave equation we use a combination of monomadal approximation and the condition of equal length tube segments to arrive at the wanted discrete equations. It is shown that open or closed boundary conditions topological leads automatically to the existence of edge modes. We illustrate by graphical construction how the edge modes appear naturally owing to a quarter-wavelength condition and the conservation of flux. Furthermore, the transparent chirality of our system, which is ensured by the geometrical constraints allows us to study chiral disorder numerically and experimentally. Our experimental results in the audible regime demonstrate the predicted robustness of the topological edge modes.
We propose an implementation of a generalized Su-Schrieffer-Heeger (SSH) model based on optomechanical arrays. The topological properties of the generalized SSH model depend on the effective optomechanical interactions enhanced by strong driving opti cal fields. Three phases including one trivial and two distinct topological phases are found in the generalized SSH model. The phase transition can be observed by turning the strengths and phases of the effective optomechanical interactions via adjusting the external driving fields. Moreover, four types of edge states can be created in generalized SSH model of an open chain under single-particle excitation, and the dynamical behaviors of the excitation in the open chain are related to the topological properties under the periodic boundary condition. We show that the edge states can be pumped adiabatically along the optomechanical arrays by periodically modulating the amplitude and frequency of the driving fields. The generalized SSH model based on the optomechanical arrays provides us a tunable platform to engineer topological phases for photons and phonons, which may have potential applications in controlling the transport of photons and phonons.
Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect o f displacements on both the total energy and the electronic structure based on a single ab initio calculation. In downfolding approaches, the electronic system is reduced to a smaller number of bands, allowing for the incorporation of additional correlation and environmental effects on these bands. However, the physical contents of this downfolded model and its potential limitations are not always obvious. Here, we study the potential-energy landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all relevant quantities can be evaluated analytically. We compare the exact results at arbitrary displacement with diagrammatic perturbation theory both in the full model and in a downfolded effective single-band model, which gives an instructive insight into the properties of downfolding. An exact reconstruction of the potential-energy landscape is possible in a downfolded model, which requires a dynamical electron-biphonon interaction. The dispersion of the bands upon atomic displacement is also found correctly, where the downfolded model by construction only captures spectral weight in the target space. In the SSH model, the electron-phonon coupling mechanism involves exclusively hybridization between the low- and high-energy bands and this limits the computational efficiency gain of downfolded models.
87 - Tetsuyuki Ochiai 2018
A network model that can describe light propagation in one-dimensional ring-resonator arrays with a dimer structure is studied as a Su-Schrieffer-Heeger-type Floquet network. The model can be regarded as a Floquet system without periodic driving and exhibits quasienergy band structures of the ring propagation phase. Resulting band gaps support deterministic edge states depending on hopping S-matrices between adjacent rings. The number of edge states is one if the Zak phase is $pi$. If the Zak phase is 0, the number is either zero or two. The criterion of the latter number is given analytically in terms of the reflection matrix of the semi-infinite system. These properties are directly verified by changing S-matrix parameters and boundary condition continuously.
133 - Zeng-Zhao Li , Juan Atalaya , 2021
We propose a realization of topological quantum interference in a pumped non-Hermitian Su-Schrieffer-Heeger lattice that can be implemented by creation and coherent control of excitonic states of trapped neutral atoms. Our approach is based on realiz ing sudden delocalization of two localized topological edge states by switching the value of the laser phase controlling the lattice potential to quench the system from the topological to the gapless or trivial non-topological quantum phases of the system. We find interference patterns in the occupation probabilities of excitations on lattice sites, with a transition from a two-excitation interference seen in the absence of pumping to many-excitation interferences in the presence of pumping. Investigation of the excitation dynamics in both the topological and trivial non-topological phases shows that such interference patterns which originate in topology are drastically distinct from interference between non-topological states of the lattice. Our results also reveal that unlike well-known situations where topological states are protected against local perturbations, in these non-Hermitian SSH systems a local dissipation at each lattice site can suppress both the total population of the lattice in the topological phase and the interference of the topological states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا