ترغب بنشر مسار تعليمي؟ اضغط هنا

Pose-guided Visible Part Matching for Occluded Person ReID

350   0   0.0 ( 0 )
 نشر من قبل Shang Gao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Occluded person re-identification is a challenging task as the appearance varies substantially with various obstacles, especially in the crowd scenario. To address this issue, we propose a Pose-guided Visible Part Matching (PVPM) method that jointly learns the discriminative features with pose-guided attention and self-mines the part visibility in an end-to-end framework. Specifically, the proposed PVPM includes two key components: 1) pose-guided attention (PGA) method for part feature pooling that exploits more discriminative local features; 2) pose-guided visibility predictor (PVP) that estimates whether a part suffers the occlusion or not. As there are no ground truth training annotations for the occluded part, we turn to utilize the characteristic of part correspondence in positive pairs and self-mining the correspondence scores via graph matching. The generated correspondence scores are then utilized as pseudo-labels for visibility predictor (PVP). Experimental results on three reported occluded benchmarks show that the proposed method achieves competitive performance to state-of-the-art methods. The source codes are available at https://github.com/hh23333/PVPM



قيم البحث

اقرأ أيضاً

Person Re-Identification (Re-Id) in occlusion scenarios is a challenging problem because a pedestrian can be partially occluded. The use of local information for feature extraction and matching is still necessary. Therefore, we propose a Pose-guided inter-and intra-part relational transformer (Pirt) for occluded person Re-Id, which builds part-aware long-term correlations by introducing transformers. In our framework, we firstly develop a pose-guided feature extraction module with regional grouping and mask construction for robust feature representations. The positions of a pedestrian in the image under surveillance scenarios are relatively fixed, hence we propose an intra-part and inter-part relational transformer. The intra-part module creates local relations with mask-guided features, while the inter-part relationship builds correlations with transformers, to develop cross relationships between part nodes. With the collaborative learning inter- and intra-part relationships, experiments reveal that our proposed Pirt model achieves a new state of the art on the public occluded dataset, and further extensions on standard non-occluded person Re-Id datasets also reveal our comparable performances.
Occluded person re-identification (ReID) aims to match person images with occlusion. It is fundamentally challenging because of the serious occlusion which aggravates the misalignment problem between images. At the cost of incorporating a pose estima tor, many works introduce pose information to alleviate the misalignment in both training and testing. To achieve high accuracy while preserving low inference complexity, we propose a network named Pose-Guided Feature Learning with Knowledge Distillation (PGFL-KD), where the pose information is exploited to regularize the learning of semantics aligned features but is discarded in testing. PGFL-KD consists of a main branch (MB), and two pose-guided branches, ieno, a foreground-enhanced branch (FEB), and a body part semantics aligned branch (SAB). The FEB intends to emphasise the features of visible body parts while excluding the interference of obstructions and background (ieno, foreground feature alignment). The SAB encourages different channel groups to focus on different body parts to have body part semantics aligned representation. To get rid of the dependency on pose information when testing, we regularize the MB to learn the merits of the FEB and SAB through knowledge distillation and interaction-based training. Extensive experiments on occluded, partial, and holistic ReID tasks show the effectiveness of our proposed network.
Occluded person re-identification (Re-ID) is a challenging task as persons are frequently occluded by various obstacles or other persons, especially in the crowd scenario. To address these issues, we propose a novel end-to-end Part-Aware Transformer (PAT) for occluded person Re-ID through diverse part discovery via a transformer encoderdecoder architecture, including a pixel context based transformer encoder and a part prototype based transformer decoder. The proposed PAT model enjoys several merits. First, to the best of our knowledge, this is the first work to exploit the transformer encoder-decoder architecture for occluded person Re-ID in a unified deep model. Second, to learn part prototypes well with only identity labels, we design two effective mechanisms including part diversity and part discriminability. Consequently, we can achieve diverse part discovery for occluded person Re-ID in a weakly supervised manner. Extensive experimental results on six challenging benchmarks for three tasks (occluded, partial and holistic Re-ID) demonstrate that our proposed PAT performs favorably against stat-of-the-art methods.
Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to the inability of modelling the data distribution conditioned on pose. Existing works use a complicated pose transformation model with various additional features such as foreground segmentation, human body parsing etc. to achieve robustness that leads to computational overhead. In this work, we propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose. Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale. We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t he conventional person re-id problem where it is assumed that person images are detected without any occlusion. We thus call this new problem the occluded person re-identitification. To address this new problem, we propose a novel Attention Framework of Person Body (AFPB) based on deep learning, consisting of 1) an Occlusion Simulator (OS) which automatically generates artificial occlusions for full-body person images, and 2) multi-task losses that force the neural network not only to discriminate a persons identity but also to determine whether a sample is from the occluded data distribution or the full-body data distribution. Experiments on a new occluded person re-id dataset and three existing benchmarks modified to include full-body person images and occluded person images show the superiority of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا