ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximum likelihood estimation for mixed fractional Vasicek processes

153   0   0.0 ( 0 )
 نشر من قبل Chunhao Cai
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The mixed fractional Vasicek model, which is an extended model of the traditional Vasicek model, has been widely used in modelling volatility, interest rate and exchange rate. Obviously, if some phenomenon are modeled by the mixed fractional Vasicek model, statistical inference for this process is of great interest. Based on continuous time observations, this paper considers the problem of estimating the drift parameters in the mixed fractional Vasicek model. We will propose the maximum likelihood estimators of the drift parameters in the mixed fractional Vasicek model with the Radon-Nikodym derivative for a mixed fractional Brownian motion. Using the fundamental martingale and the Laplace transform, both the strong consistency and the asymptotic normality of the maximum likelihood estimators have been established for all $Hin(0,1)$, $H eq 1/2$.



قيم البحث

اقرأ أيضاً

To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. T his process generalizes both the well known mixed fractional Brownian motion introduced by Cheridito [10] and the generalized fractional Brownian motion introduced by Zili [31]. We study its main stochastic properties, its non-Markovian and non-stationarity characteristics and the conditions under which it is not a semimartingale. We prove the long range dependence properties of this process.
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of a graph denoted by $K$ diverge to infinity. Finally, we display the estimation results in a Monte Carlo simulation considering different numbers of latent variables. Besides, we make a comparison between Laplace and variational approximations for inference of our model.
Statistical models with latent structure have a history going back to the 1950s and have seen widespread use in the social sciences and, more recently, in computational biology and in machine learning. Here we study the basic latent class model propo sed originally by the sociologist Paul F. Lazarfeld for categorical variables, and we explain its geometric structure. We draw parallels between the statistical and geometric properties of latent class models and we illustrate geometrically the causes of many problems associated with maximum likelihood estimation and related statistical inference. In particular, we focus on issues of non-identifiability and determination of the model dimension, of maximization of the likelihood function and on the effect of symmetric data. We illustrate these phenomena with a variety of synthetic and real-life tables, of different dimension and complexity. Much of the motivation for this work stems from the 100 Swiss Francs problem, which we introduce and describe in detail.
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and thes e may be hard to interpret when the true mixing distribution is believed to have a smooth density. In this paper, we investigate an algorithm that produces a sequence of smooth estimates that has been conjectured to converge to the nonparametric maximum likelihood estimator. Here we give a rigorous proof of this conjecture, and propose a new data-driven stopping rule that produces smooth near-maximum likelihood estimates of the mixing density, and simulations demonstrate the quality empirical performance of this estimator.
The approximation of integral functionals with respect to a stationary Markov process by a Riemann-sum estimator is studied. Stationarity and the functional calculus of the infinitesimal generator of the process are used to get a better understanding of the estimation error and to prove a general error bound. The presented approach admits general integrands and gives a unifying explanation for different rates obtained in the literature. Several examples demonstrate how the general bound can be related to well-known function spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا