ﻻ يوجد ملخص باللغة العربية
Understanding how to tailor quantum dynamics to achieve a desired evolution is a crucial problem in almost all quantum technologies. We present a very general method for designing high-efficiency control sequences that are always fully compatible with experimental constraints on available interactions and their tunability. Our approach reduces in the end to finding control fields by solving a set of time-independent linear equations. We illustrate our method by applying it to a number of physically-relevant problems: the strong-driving limit of a two-level system, fast squeezing in a parametrically driven cavity, the leakage problem in transmon qubit gates, and the acceleration of SNAP gates in a qubit-cavity system.
Effective transport of quantum information is an essential element of quantum computation. We consider the problem of transporting a quantum state by using a moving potential well, while maintaining the encoded quantum information. In particular, we
I derive a tight bound between the quality of estimating the state of a single copy of a $d$-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the q
We present a new and simplified two-qubit randomized benchmarking procedure that operates only in the symmetric subspace of a pair of qubits and is well suited for benchmarking trapped-ion systems. By performing benchmarking only in the symmetric sub
Spin chains have been proposed as quantum wires for information transfer in solid state quantum architectures. We show that huge gains in both transfer speed and fidelity are possible using a minimalist control approach that relies only a single, loc
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate