ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Dimensional Materials for Energy-Efficient Spin-Orbit Torque Devices

225   0   0.0 ( 0 )
 نشر من قبل Qiming Shao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit torques (SOTs), which rely on spin current generation from charge current in a nonmagnetic material, promise an energy-efficient scheme for manipulating magnetization in magnetic devices. A critical topic for spintronic devices using SOTs is to enhance the charge to spin conversion efficiency. Besides, the current-induced spin polarization is usually limited to in-plane, whereas out-of-plane spin polarization could be favored for efficient perpendicular magnetization switching. Recent advances in utilizing two important classes of van der Waals materials$-$topological insulators and transition-metal dichalcogenides$-$as spin sources to generate SOT shed light on addressing these challenges. Topological insulators such as bismuth selenide have shown a giant SOT efficiency, which is larger than those from three-dimensional heavy metals by at least one order of magnitude. Transition-metal dichalcogenides such as tungsten telluride have shown a current-induced out-of-plane spin polarization, which is allowed by the reduced symmetry. In this review, we use symmetry arguments to predict and analyze SOTs in van der Waal material-based heterostructures. We summarize the recent progress of SOT studies based on topological insulators and transition-metal dichalcogenides and show how these results are in line with the symmetry arguments. At last, we identify unsolved issues in the current studies and suggest three potential research directions in this field.



قيم البحث

اقرأ أيضاً

205 - Fei Xue , Paul M. Haney 2021
Spin-orbit torque enables electrical control of the magnetic state of ferromagnets or antiferromagnets. In this work we consider the spin-orbit torque in the 2-d Van der Waals antiferromagnetic bilayer CrI$_3$, in the $n$-doped regime. In the purely antiferromagnetic state, two individually inversion-symmetry broken layers of CrI$_3$ form inversion partners, like the well-studied CuMnAs and Mn$_2$Au. However, the exchange and anisotropy energies are similar in magnitude, unlike previously studied antiferromagnets, which leads to qualitatively different behaviors in this material. Using a combination of first-principles calculations of the spin-orbit torque and an analysis of the ensuing spin dynamics, we show that the deterministic electrical switching of the Neel vector is the result of dampinglike spin-orbit torque, which is staggered on the magnetic sublattices.
Spin-orbit torque (SOT) magnetization switching of ferromagnets with large perpendicular magnetic anisotropy has a great potential for the next-generation non-volatile magnetoresistive random-access memory (MRAM). It requires a high-performance pure spin current source with a large spin Hall angle and high electrical conductivity, which can be fabricated by a mass production technique. In this work, we demonstrate ultrahigh efficient and robust SOT magnetization switching in all-sputtered BiSb topological insulator - perpendicularly magnetized Co/Pt multilayers. Despite fabricated by the industry-friendly magnetron sputtering instead of the laboratory molecular beam epitaxy, the topological insulator layer, BiSb, shows a large spin Hall angle of $theta$$_{SH}$ = 12.3 and high electrical conductivity of $sigma$ = 1.5x$10^5$ $Omega^{-1}$m$^{-1}$. Our results demonstrate the mass production capability of BiSb topological insulator for implementation of ultralow power SOT-MRAM and other SOT-based spintronic devices.
We have studied the spin orbit torque (SOT) in Pt/Co/Ir multilayers with 3 repeats of the unit structure. As the system exhibits oscillatory interlayer exchange coupling (IEC) with varying Ir layer thickness, we compare the SOT of films when the Co l ayers are coupled ferromagnetically and antiferromagnetically. SOT is evaluated using current induced shift of the anomalous Hall resistance hysteresis loops. A relatively thick Pt layer, serving as a seed layer to the multilayer, is used to generate spin current via the spin Hall effect. In the absence of antiferromagnetic coupling, the SOT is constant against the applied current density and the corresponding spin torque efficiency (i.e. the effective spin Hall angle) is $sim$0.09, in agreement with previous reports. In contrast, for films with antiferromagnetic coupling, the SOT increases with the applied current density and eventually saturates. The SOT at saturation is a factor of $sim$15 larger than that without the antiferromagnetic coupling. The spin torque efficiency is $sim$5 times larger if we assume the net total magnetization is reduced by a factor of 3 due to the antiferromagnetic coupling. Model calculations based on the Landau Lifshitz Gilbert equation show that the presence of antiferromagnetic coupling can increase the SOT but the degree of enhancement is limited, in this case, to a factor of 1.2-1.4. We thus consider there are other sources of SOT, possibly at the interfaces, which may account for the highly efficient SOT in the uncompensated synthetic anti-ferromagnet (SAF) multilayers.
Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low Gilbert damping and absence of Ohmic loss. Magnetic order of MIs can be manipulated and even switched by spin-orbit torques (SOTs) generated through spin Hal l effect and Rashba-Edelstein effect in heavy metal/MI bilayers. SOTs on MIs are more intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how SOTs scale with the film thickness. Here, we observe the critical role of dimensionality on the SOT efficiency by systematically studying the MI layer thickness dependent SOT efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We first show that the TmIG thin film evolves from two-dimensional to three-dimensional magnetic phase transitions as the thickness increases, due to the suppression of long-wavelength thermal fluctuation. Then, we report the significant enhancement of the measured SOT efficiency as the thickness increases. We attribute this effect to the increase of the magnetic moment density in concert with the suppression of thermal fluctuations. At last, we demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up to 15 nm. The switching current density is comparable with those of heavy metal/ferromagnetic metal cases. Our findings shed light on the understanding of SOTs in MIs, which is important for the future development of ultrathin MI-based low-power spintronics.
The existence of spin-currents in absence of any driving external fields is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rath er general property of materials with non negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin-currents along specific crystallographic directions of materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as the analogous of the color degree of freedom and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to an effective non-Abelian magnetic field generated by SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for several systems, specifically metallic surfaces presenting Rashba-like surface states, nitride semiconducting nanostructures and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use Density Functional Theory computing the so-called bond currents, which represent a powerful tool to understand the relation between equilibrium currents, electronic structure and crystal point group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا