ترغب بنشر مسار تعليمي؟ اضغط هنا

Giants eating giants: Mass loss and giant planets modifying the luminosity of the Tip of the Giant Branch

97   0   0.0 ( 0 )
 نشر من قبل Raul Jimenez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the red giant phase, stars loose mass at the highest rate since birth. The mass-loss rate is not fixed, but varies from star-to-star by up to 5%, resulting in variations of the stars luminosity at the tip of the red giant branch (TRGB). Also, most stars, during this phase, engulf part of their planetary system, including their gas giant planets and possibly brown dwarfs. Gas giant planet masses range between 0.1 to 2% of the host star mass. The engulfing of their gas giants planets can modify their luminosity at the TRGB, i.e. the point at which the He-core degeneracy is removed. We show that the increase in mass of the star by the engulfing of the gas giant planets only modifies the luminosity of a star at the TRGB by less than 0.1%, while metallicity can modify the luminosity of a star at the TRGB by up to 0.5%. However, the increase in turbulence of the convective envelope of the star, has a more dramatic effect, on the stars luminosity, which we estimate could be as large as 5%. The effect is always in the direction to increase the turbulence and thus the mixing length which turns into a systematic decrease of the luminosity of the star at the TRGB. We find that the star-to-star variation of the mass-loss rate will dominate the variations in the luminosity of the TRGB with a contribution at the 5% level. If the star-to-star variation is driven by environmental effects, the same effects can potentially create an environmentally-driven mean effect on the luminosity of the tip of the red giant branch of a galaxy. Engulfment of a brown dwarf will have a more dramatic effect. Finally, we touch upon how to infer the frequency, and identify the engulfment, of exoplanets in low-metallicity RGB stars through high resolution spectroscopy as well as how to quantify mass loss rate distributions from the morphology of the horizontal branch.

قيم البحث

اقرأ أيضاً

(Abridged). We introduce the Aarhus Red Giants Challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes aiming at establishing the minimum level of uncertainties in properties of red giants arising solel y from numerical implementations. Using 9 state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at fixed radius along the red-giant branch for masses of 1.0 M$_odot$, 1.5 M$_odot$, 2.0 M$_odot$, and 2.5 M$_odot$, and compared the predicted stellar properties. Once models have been calibrated on the main sequence we find a residual spread in the predicted effective temperatures across all codes of ~20 K at solar radius and ~30-40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2-5% (increasing with stellar mass) which we track down to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ~0.1 mag in the optical V-band. We also compare the predicted [C/N] abundance ratio and found a spread of 0.1 dex or more for all considered masses. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and call for further investigations on these matters in the context of using properties of red giants as benchmarks for astrophysical studies.
Context. The large quantity of high-quality asteroseismic data that obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of s tellar models, when applied as diagnostics of the model properties. Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we investigate the extent to which the differences in the model calculation affect the model oscillation frequencies. Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we computed full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding model differences. Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational precision of these properties, in particular for the nonradial modes whose mixed acoustic and gravity-wave character makes them sensitive to the structure of the deep stellar interior. In some cases, identifying these differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this. Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe intrinsic limitations in the modelling. However, our analysis of the frequency differences and their relation to stellar internal properties provides a striking illustration of the potential of the mixed modes of red-giant stars for the diagnostics of stellar interiors.
We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modeling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can be reproduced only by accounting for a range of initial He abundances --in agreement with inferences from the analysis of the main sequence-- and a red giant branch mass loss with a small dispersion. We have carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modeling, stemming from uncertainties in both stellar model computations and the cluster properties such as heavy element abundances, reddening and age. We determine a firm lower limit of ~0.17$Mo for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65Mo and ~0.73Mo (the range driven by the range of initial helium abundances). We also derive that in this cluster the amount of mass lost along the asymptotic giant branch stars is comparable to the mass lost during the previous red giant branch phase. These results confirm for this cluster the disagreement between colour-magnitude-diagram analyses and inferences from recent studies of the dynamics of the cluster stars, that predict a much less efficient red giant branch mass loss. A comparison between the results from these two techniques applied to other clusters is required, to gain more insights about the origin of this disagreement.
In this paper JK_s data from the VISTA Magellanic Cloud (VMC) survey are used to investigate the tip of the red giant branch (TRGB) as a distance indicator. A linear fit to recent theoretical models is used which reads M_{K_s} = -4.196 -2.013 (J-K_s) , valid in the colour range 0.75 < (J-K_s) < 1.3 mag and in the 2MASS system. The observed TRGB is found based on a classical first-order and a second-order derivative filter applied to the binned luminosity function using the sharpened magnitude that takes the colour term into account. Extensive simulations are carried out to investigate any biases and errors in the derived distance modulus (DM). Based on these simulations criteria are established related to the number of stars per bin in the 0.5 magnitude range below the TRGB and related to the significance with which the peak in the filter response curve is determined such that the derived distances are unbiased. The DMs based on the second-order derivative filter are found to be more stable and are therefore adopted, although this requires twice as many stars per bin. The TRGB method is applied to specific lines-of-sight where independent distance estimates exist, based on detached eclipsing binaries in the LMC and SMC, classical Cepheids in the LMC, RR Lyrae stars in the SMC, and fields in the SMC where the star formation history (together with reddening and distance) has been derived from deep VMC data. The analysis shows that the theoretical calibration is consistent with the data, that the systematic error on the DM is approximately 0.045 mag, and that random errors of 0.015 mag are achievable. Reddening is an important element in deriving the distance: we find mean DMs ranging from 18.92 (for a typical E(B-V) of 0.15 mag) to 19.07 mag (E(B-V) about 0.04) for the SMC, and ranging from 18.48 (E(B-V) about 0.12 mag) to 18.57 mag (E(B-V) about 0.05) for the LMC.
We present a new empirical (JHK) absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive emph{Near-Infrared Synoptic Survey} containing 3.5 million stars, of which 6 5,000 are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC,1613 as well as an LMC distance modulus of (mu_0 = )~18.49~mag from (geometric) detached eclipsing binaries, we derive absolute (JHK) zero-points for the near-infrared TRGB. For comparison with measurements in the bar alone, we apply the calibrated (JHK) TRGB to a 500 degtextsuperscript{2} area of the 2MASS survey. The TRGB reveals the 3-dimensional structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, in agreement with previous studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا