ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Uncertainty Learning in Face Recognition

116   0   0.0 ( 0 )
 نشر من قبل Jie Chang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling data uncertainty is important for noisy images, but seldom explored for face recognition. The pioneer work, PFE, considers uncertainty by modeling each face image embedding as a Gaussian distribution. It is quite effective. However, it uses fixed feature (mean of the Gaussian) from an existing model. It only estimates the variance and relies on an ad-hoc and costly metric. Thus, it is not easy to use. It is unclear how uncertainty affects feature learning. This work applies data uncertainty learning to face recognition, such that the feature (mean) and uncertainty (variance) are learnt simultaneously, for the first time. Two learning methods are proposed. They are easy to use and outperform existing deterministic methods as well as PFE on challenging unconstrained scenarios. We also provide insightful analysis on how incorporating uncertainty estimation helps reducing the adverse effects of noisy samples and affects the feature learning.

قيم البحث

اقرأ أيضاً

With the recent success of deep neural networks, remarkable progress has been achieved on face recognition. However, collecting large-scale real-world training data for face recognition has turned out to be challenging, especially due to the label no ise and privacy issues. Meanwhile, existing face recognition datasets are usually collected from web images, lacking detailed annotations on attributes (e.g., pose and expression), so the influences of different attributes on face recognition have been poorly investigated. In this paper, we address the above-mentioned issues in face recognition using synthetic face images, i.e., SynFace. Specifically, we first explore the performance gap between recent state-of-the-art face recognition models trained with synthetic and real face images. We then analyze the underlying causes behind the performance gap, e.g., the poor intra-class variations and the domain gap between synthetic and real face images. Inspired by this, we devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the above performance gap, demonstrating the great potentials of synthetic data for face recognition. Furthermore, with the controllable face synthesis model, we can easily manage different factors of synthetic face generation, including pose, expression, illumination, the number of identities, and samples per identity. Therefore, we also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
Face recognition systems are usually faced with unseen domains in real-world applications and show unsatisfactory performance due to their poor generalization. For example, a well-trained model on webface data cannot deal with the ID vs. Spot task in surveillance scenario. In this paper, we aim to learn a generalized model that can directly handle new unseen domains without any model updating. To this end, we propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR). MFR synthesizes the source/target domain shift with a meta-optimization objective, which requires the model to learn effective representations not only on synthesized source domains but also on synthesized target domains. Specifically, we build domain-shift batches through a domain-level sampling strategy and get back-propagated gradients/meta-gradients on synthesized source/target domains by optimizing multi-domain distributions. The gradients and meta-gradients are further combined to update the model to improve generalization. Besides, we propose two benchmarks for generalized face recognition evaluation. Experiments on our benchmarks validate the generalization of our method compared to several baselines and other state-of-the-arts. The proposed benchmarks will be available at https://github.com/cleardusk/MFR.
117 - Yong Li , Lingjie Lao , Zhen Cui 2021
Cartoon face recognition is challenging as they typically have smooth color regions and emphasized edges, the key to recognize cartoon faces is to precisely perceive their sparse and critical shape patterns. However, it is quite difficult to learn a shape-oriented representation for cartoon face recognition with convolutional neural networks (CNNs). To mitigate this issue, we propose the GraphJigsaw that constructs jigsaw puzzles at various stages in the classification network and solves the puzzles with the graph convolutional network (GCN) in a progressive manner. Solving the puzzles requires the model to spot the shape patterns of the cartoon faces as the texture information is quite limited. The key idea of GraphJigsaw is constructing a jigsaw puzzle by randomly shuffling the intermediate convolutional feature maps in the spatial dimension and exploiting the GCN to reason and recover the correct layout of the jigsaw fragments in a self-supervised manner. The proposed GraphJigsaw avoids training the classification model with the deconstructed images that would introduce noisy patterns and are harmful for the final classification. Specially, GraphJigsaw can be incorporated at various stages in a top-down manner within the classification model, which facilitates propagating the learned shape patterns gradually. GraphJigsaw does not rely on any extra manual annotation during the training process and incorporates no extra computation burden at inference time. Both quantitative and qualitative experimental results have verified the feasibility of our proposed GraphJigsaw, which consistently outperforms other face recognition or jigsaw-based methods on two popular cartoon face datasets with considerable improvements.
134 - Ziyu Zhang , Feipeng Da , Yi Yu 2019
Point clouds-based Networks have achieved great attention in 3D object classification, segmentation and indoor scene semantic parsing. In terms of face recognition, 3D face recognition method which directly consume point clouds as input is still unde r study. Two main factors account for this: One is how to get discriminative face representations from 3D point clouds using deep network; the other is the lack of large 3D training dataset. To address these problems, a data-free 3D face recognition method is proposed only using synthesized unreal data from statistical 3D Morphable Model to train a deep point cloud network. To ease the inconsistent distribution between model data and real faces, different point sampling methods are used in train and test phase. In this paper, we propose a curvature-aware point sampling(CPS) strategy replacing the original furthest point sampling(FPS) to hierarchically down-sample feature-sensitive points which are crucial to pass and aggregate features deeply. A PointNet++ like Network is used to extract face features directly from point clouds. The experimental results show that the network trained on generated data generalizes well for real 3D faces. Fine tuning on a small part of FRGCv2.0 and Bosphorus, which include real faces in different poses and expressions, further improves recognition accuracy.
Face verification has come into increasing focus in various applications including the European Entry/Exit System, which integrates face recognition mechanisms. At the same time, the rapid advancement of biometric authentication requires extensive pe rformance tests in order to inhibit the discriminatory treatment of travellers due to their demographic background. However, the use of face images collected as part of border controls is restricted by the European General Data Protection Law to be processed for no other reason than its original purpose. Therefore, this paper investigates the suitability of synthetic face images generated with StyleGAN and StyleGAN2 to compensate for the urgent lack of publicly available large-scale test data. Specifically, two deep learning-based (SER-FIQ, FaceQnet v1) and one standard-based (ISO/IEC TR 29794-5) face image quality assessment algorithm is utilized to compare the applicability of synthetic face images compared to real face images extracted from the FRGC dataset. Finally, based on the analysis of impostor score distributions and utility score distributions, our experiments reveal negligible differences between StyleGAN vs. StyleGAN2, and further also minor discrepancies compared to real face images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا