ترغب بنشر مسار تعليمي؟ اضغط هنا

A posteriori probabilistic feasibility guarantees for Nash equilibria in uncertain multi-agent games

137   0   0.0 ( 0 )
 نشر من قبل George Pantazis
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper a distribution-free methodology is presented for providing robustness guarantees for Nash equilibria (NE) of multi-agent games. Leveraging recent a posteriori developments of the so called scenario approach (Campi et al., 2018), we provide probabilistic guarantees for feasibility problems with polytopic constraints. This result is then used in the context of multi-agent games, allowing to provide robustness certificates for constraint violation of any NE of a given game. Our guarantees can be used alongside any NE seeking algorithm that returns some equilibrium solution. Finally, by exploiting the structure of our problem, we circumvent the need of employing computationally prohibitive algorithms to find an irreducible support subsample, a concept at the core of the scenario approach. Our theoretical results are accompanied by simulation studies that investigate the robustness of the solutions of two different problems, namely, a 2-dimensional feasibility problem and an electric vehicle (EV) charging control problem.



قيم البحث

اقرأ أيضاً

We develop a data-driven approach to the computation of a-posteriori feasibility certificates to the solution sets of variational inequalities affected by uncertainty. Specifically, we focus on instances of variational inequalities with a determinist ic mapping and an uncertain feasibility set, and represent uncertainty by means of scenarios. Building upon recent advances in the scenario approach literature, we quantify the robustness properties of the entire set of solutions of a variational inequality, with feasibility set constructed using the scenario approach, against a new unseen realization of the uncertainty. Our results extend existing results that typically impose an assumption that the solution set is a singleton and require certain non-degeneracy properties, and thereby offer probabilistic feasibility guarantees to any feasible solution. We show that assessing the violation probability of an entire set of solutions, rather than of a singleton, requires enumeration of the support constraints that shape this set. Additionally, we propose a general procedure to enumerate the support constraints that does not require a closed form description of the solution set, which is unlikely to be available. We show that robust game theory problems can be modelling via uncertain variational inequalities, and illustrate our theoretical results through extensive numerical simulations on a case study involving an electric vehicle charging coordination problem.
This paper shows the existence of $mathcal{O}(frac{1}{n^gamma})$-Nash equilibria in $n$-player noncooperative aggregative games where the players cost functions depend only on their own action and the average of all the players actions, and is lower semicontinuous in the former while $gamma$-H{o}lder continuous in the latter. Neither the action sets nor the cost functions need to be convex. For an important class of aggregative games which includes congestion games with $gamma$ being 1, a proximal best-reply algorithm is used to construct an $mathcal{O}(frac{1}{n})$-Nash equilibria with at most $mathcal{O}(n^3)$ iterations. These results are applied in a numerical example of demand-side management of the electricity system. The asymptotic performance of the algorithm is illustrated when $n$ tends to infinity.
We study a class of deterministic finite-horizon two-player nonzero-sum differential games where players are endowed with different kinds of controls. We assume that Player 1 uses piecewise-continuous controls, while Player 2 uses impulse controls. F or this class of games, we seek to derive conditions for the existence of feedback Nash equilibrium strategies for the players. More specifically, we provide a verification theorem for identifying such equilibrium strategies, using the Hamilton-Jacobi-Bellman (HJB) equations for Player 1 and the quasi-variational inequalities (QVIs) for Player 2. Further, we show that the equilibrium number of interventions by Player 2 is upper bounded. Furthermore, we specialize the obtained results to a scalar two-player linear-quadratic differential game. In this game, Player 1s objective is to drive the state variable towards a specific target value, and Player 2 has a similar objective with a different target value. We provide, for the first time, an analytical characterization of the feedback Nash equilibrium in a linear-quadratic differential game with impulse control. We illustrate our results using numerical experiments.
We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain multi-agent optimization programs. We first assume that only the constraints of the program are affected by uncertainty, while the cost function is arbitrary. Leveraging recent a posteriori developments of the scenario approach, we provide probabilistic guarantees for all feasible solutions of the program under study. This result is particularly useful in cases where numerical difficulties related to the convergence of the solution-seeking algorithm hinder the exact quantification of the optimal solution. Furthermore, it can be applied to cases where the agents incentives lead to a suboptimal solution, e.g., under a non-cooperative setting. We then focus on optimization programs where the cost function admits an aggregate representation and depends on uncertainty while constraints are deterministic. By exploiting the structure of the program under study and leveraging the so called support rank notion, we provide agent-independent robustness certificates for the optimal solution, i.e., the constructed bound on the probability of constraint violation does not depend on the number of agents, but only on the dimension of the agents decision. This substantially reduces the number of samples required to achieve a certain level of probabilistic robustness as the number of agents increases. All robustness certificates provided in this paper are distribution-free and can be used alongside any optimization algorithm. Our theoretical results are accompanied by a numerical case study involving a charging control problem of a fleet of electric vehicles.
146 - Minyi Huang , Xuwei Yang 2021
This paper studies an asymptotic solvability problem for linear quadratic (LQ) mean field games with controlled diffusions and indefinite weights for the state and control in the costs. We employ a rescaling approach to derive a low dimensional Ricca ti ordinary differential equation (ODE) system, which characterizes a necessary and sufficient condition for asymptotic solvability. The rescaling technique is further used for performance estimates, establishing an $O(1/N)$-Nash equilibrium for the obtained decentralized strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا