ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Metric Shows the Robustness of the Graph Communities to Brain-Tractography False-Positives

140   0   0.0 ( 0 )
 نشر من قبل Juan Luis Villarreal-Haro
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of the brain tractography false positives in the brain connectivity graphs. The representative input database for the analysis is the set of tractograms from the participants on the ISMRM-2015 Tractography Challenge. We propose 2 novel metrics to rank the quality of a tractogram when it is compared with known ground truth. The results of this study indicate that the estimation of graph communities is robust to high levels of overestimation in the connectivity.

قيم البحث

اقرأ أيضاً

Brain Electroencephalography (EEG) classification is widely applied to analyze cerebral diseases in recent years. Unfortunately, invalid/noisy EEGs degrade the diagnosis performance and most previously developed methods ignore the necessity of EEG se lection for classification. To this end, this paper proposes a novel maximum weight clique-based EEG selection approach, named mwcEEGs, to map EEG selection to searching maximum similarity-weighted cliques from an improved Fr{e}chet distance-weighted undirected EEG graph simultaneously considering edge weights and vertex weights. Our mwcEEGs improves the classification performance by selecting intra-clique pairwise similar and inter-clique discriminative EEGs with similarity threshold $delta$. Experimental results demonstrate the algorithm effectiveness compared with the state-of-the-art time series selection algorithms on real-world EEG datasets.
The feasibility of wave function collapse in the human brain has been the subject of vigorous scientific debates since the advent of quantum theory. Scientists like Von Neumann, London, Bauer and Wigner (initially) believed that wave function collaps e occurs in the brain or is caused by the mind of the observer. It is a legitimate question to ask how human brain can receive subtle external visual quantum information intact when it must pass through very noisy and complex pathways from the eye to the brain? There are several approaches to investigate information processing in the brain, each of which presents a different set of conclusions. Penrose and Hameroff have hypothesized that there is quantum information processing inside the human brain whose material substrate involves microtubules and consciousness is the result of a collective wavefunction collapse occurring in these structures. Conversely, Tegmark stated that owing to thermal decoherence there cannot be any quantum processing in neurons of the brain and processing in the brain must be classical for cognitive processes. However, Rosa and Faber presented an argument for a middle way which shows that none of the previous authors are completely right and despite the presence of decoherence, it is still possible to consider the brain to be a quantum system. Additionally, Thaheld, has concluded that quantum states of photons do collapse in the human eye and there is no possibility for collapse of visual quantum states in the brain and thus there is no possibility for the quantum state reduction in the brain. In this paper we conclude that if we accept the main essence of the above approaches taken together, each of them can provide a different part of a teleportation mechanism.
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these are as, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We p resent measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems which are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant planet candidate systems with chromospheric emission stronger than the Sun are not giant planet system, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypotesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbital period.
During mechanical ventilation, patient-ventilator disharmony is frequently observed and may result in increased breathing effort, compromising the patients comfort and recovery. This circumstance requires clinical intervention and becomes challenging when verbal communication is difficult. In this work, we propose a brain computer interface (BCI) to automatically and non-invasively detect patient-ventilator disharmony from electroencephalographic (EEG) signals: a brain-ventilator interface (BVI). Our framework exploits the cortical activation provoked by the inspiratory compensation when the subject and the ventilator are desynchronized. Use of a one-class approach and Riemannian geometry of EEG covariance matrices allows effective classification of respiratory states. The BVI is validated on nine healthy subjects that performed different respiratory tasks that mimic a patient-ventilator disharmony. Classification performances, in terms of areas under ROC curves, are significantly improved using EEG signals compared to detection based on air flow. Reduction in the number of electrodes that can achieve discrimination can often be desirable (e.g. for portable BCI systems). By using an iterative channel selection technique, the Common Highest Order Ranking (CHOrRa), we find that a reduced set of electrodes (n=6) can slightly improve for an intra-subject configuration, and it still provides fairly good performances for a general inter-subject setting. Results support the discriminant capacity of our approach to identify anomalous respiratory states, by learning from a training set containing only normal respiratory epochs. The proposed framework opens the door to brain-ventilator interfaces for monitoring patients breathing comfort and adapting ventilator parameters to patient respiratory needs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا