ﻻ يوجد ملخص باللغة العربية
Sulfur and nitrogen dual doped graphene have been extensively investigated in the field of oxygen reduction reaction, supercapacitors and batteries, but their magnetic and absorption performance have not been explored. Besides, the effects of doping sequence of sulfur and nitrogen atoms on the morphology, structural property and the corresponding microwave absorption performance of the dual doped graphene remain unexplored. In this work, nitrogen and sulfur dual doped graphene with different doping sequence were successfully prepared using a controllable two steps facile thermal treatment method. The first doping process played a decisive role on the morphology, crystal size, interlayer distance, doping degree and ultimately magnetic and microwave absorption properties of the dual doped graphene samples. Meanwhile, the second doping step affected the doping sites and further had a repairing or damaging effect on the final doped graphene. The dual doped graphene samples exhibited two pronounced absorption peaks which intensity was decided by the order of the doping elements. This nitrogen and sulfur dual doped graphene with controlled doping order provides a strategy for understanding of the interaction between nitrogen and sulfur as dual dopants in graphene and further acquiring microwave absorbing materials with tunable absorption bands by varying the doping sequence.
Harvesting all sources of available clean energy is an essential strategy to contribute to healing current dependence on non-sustainable energy sources. Recently, triboelectric nanogenerators (TENGs) have gained visibility as new mechanical energy ha
We present an electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth and we exploit it to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal-gr
We demonstrate that polymer composites with a low loading of graphene, below 1.2 wt. %, are efficient as electromagnetic absorbers in the THz frequency range. The epoxy-based graphene composites were tested at frequencies from 0.25 THz to 4 THz, reve
Graphene, due to its exceptional properties, is a promising material for nanotechnology applications. In this context, the ability to tune the properties of graphene-based materials and devices with the incorporation of defects and impurities can be
We report the discovery of a strong and tunable spin lifetime anisotropy with excellent spin lifetimes up to 7.8 ns in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically-controlled spin-orbit