ﻻ يوجد ملخص باللغة العربية
Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversion efficiency in order to find practical applications in quantum light source and high resolution nonlinear microscopy, etc. Here an enhanced SHG with conversion efficiency up to the order of 0.01% at SH wavelength of 282 nm under 11 GW/cm2 pump power via the excitation of anapole in lithium niobite (LiNbO3, or LN) nanodisk through the dominating d33 nonlinear coefficient is investigated. The anapole has advantages of strongly suppressing far-field scattering and well-confined internal field which helps to boost the nonlinear conversion. Anapoles in LN nanodisk is facilitated by high index contrast between LN and substrate with properties of near-zero-index via hyperbolic metamaterial structure design. By tailoring the multi-layers structure of hyperbolic metamaterials, the anapole excitation wavelength can be tuned at different wavelengths. It indicates that an enhanced SHG can be achieved at a wide range of pump light wavelengths via different design of the epsilon-near-zero (ENZ) hyperbolic metamaterials substrates. The proposed nanostructure in this work might hold significances for the enhanced light-matter interactions at the nanoscale such as integrated optics.
Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important o
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for
We demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of $eta_0= 33000%/text{W-cm}^2$, significantly exceeding previous demonstrations.
Bound states in the continuum (BICs), a concept from quantum mechanics, are ubiquitous physical phenomena where waves will be completely locked inside physical systems without energy leaky. Such a physical phenomenon in optics will provide a platform
Lithium niobate (LN), dubbed by many as the silicon of photonics, has recently risen to the forefront of chip-scale nonlinear optics research since its demonstration as an ultralow-loss integrated photonics platform. Due to its significant quadratic