ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Potts Models on the Sierpinski Pyramid

85   0   0.0 ( 0 )
 نشر من قبل Andrej Gendiar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase transition of the two- and three-state quantum Potts models on the Sierpinski pyramid are studied by means of a tensor network framework, the higher-order tensor renormalization group method. Critical values of the transverse magnetic field and the magnetic exponent $beta$ are evaluated. Despite the fact that the Hausdorff dimension of the Sierpinski pyramid is exactly two $( = log_2^{~} 4)$, the obtained critical properties show that the effective dimension is lower than two.



قيم البحث

اقرأ أيضاً

We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to inf ty$ and relate these to thermodynamic properties of the $q$-state Potts ferromagnet and antiferromagnet on the Sierpinski gasket fractal, $S_infty$.
131 - N.G. Fytas , A. Malakis , W. Selke 2015
We study the effect of interfacial phenomena in two-dimensional perfect and random (or disordered) $q$-state Potts models with continuous phase transitions, using, mainly, Monte Carlo techniques. In particular, for the total interfacial adsorption, t he critical behavior, including corrections to scaling, are analyzed. The role of randomness is scrutinized. Results are discussed applying scaling arguments and invoking findings for bulk critical properties. In all studied cases, i.e., $q = 3$, $4$, and $q = 8$, the spread of the interfacial adsorption profiles is observed to increase linearly with the lattice size at the bulk transition point.
The number of independent sets is equivalent to the partition function of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. We study the number of independent sets $m_{d,b}(n)$ on the generalized Sierpinski gasket $SG _{d,b}(n)$ at stage $n$ with dimension $d$ equal to two, three and four for $b=2$, and layer $b$ equal to three for $d=2$. The upper and lower bounds for the asymptotic growth constant, defined as $z_{SG_{d,b}}=lim_{v to infty} ln m_{d,b}(n)/v$ where $v$ is the number of vertices, on these Sierpinski gaskets are derived in terms of the results at a certain stage. The numerical values of these $z_{SG_{d,b}}$ are evaluated with more than a hundred significant figures accurate. We also conjecture the upper and lower bounds for the asymptotic growth constant $z_{SG_{d,2}}$ with general $d$.
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim es 13})(16)^n$. We also obtain the number of Hamiltonian paths with one end at a certain outmost vertex of SG(n), with asymptotic behavior $frac {sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac {7 times 17}{2^4 times 3^3})4^n$. The distribution of Hamiltonian paths on SG(n) with one end at a certain outmost vertex and the other end at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean $ell$ displacement between the two end vertices of such Hamiltonian paths on SG(n) is $ell log 2 / log 3$ for $ell>0$.
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: We analytically characterize a Hopf bifurcation which separates a high-temperature regime of uniform occupations from a low-temperature one where all units coalesce into a single state. For odd $q$ below the critical temperature starts a synchronization regime which ends via a second phase transition at lower temperatures, while for even $q$ this intermediate phase disappears. We find that interactions have no effects except below critical temperature for attractive interactions. A thermodynamic analysis reveals that the dissipated work is reduced in this regime, whose temperature range is shown to decrease as $q$ increases. The $q$-dependence of the power-efficiency trade-off is also analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا