ﻻ يوجد ملخص باللغة العربية
More attention is being paid for feature importance ranking (FIR), in particular when thousands of features can be extracted for intelligent diagnosis and personalized medicine. A large number of FIR approaches have been proposed, while few are integrated for comparison and real-life applications. In this study, a matlab toolbox is presented and a total of 30 algorithms are collected. Moreover, the toolbox is evaluated on a database of 163 ultrasound images. To each breast mass lesion, 15 features are extracted. To figure out the optimal subset of features for classification, all combinations of features are tested and linear support vector machine is used for the malignancy prediction of lesions annotated in ultrasound images. At last, the effectiveness of FIR is analyzed according to performance comparison. The toolbox is online (https://github.com/NicoYuCN/matFIR). In our future work, more FIR methods, feature selection methods and machine learning classifiers will be integrated.
State Space Models (SSM) is a MATLAB 7.0 software toolbox for doing time series analysis by state space methods. The software features fully interactive construction and combination of models, with support for univariate and multivariate models, comp
This paper presents a Matlab toolbox to perform basic image processing and visualization tasks, particularly designed for medical image processing. The functionalities available are similar to basic functions found in other non-Matlab widely used lib
We introduce PoCET: a free and open-scource Polynomial Chaos Expansion Toolbox for Matlab, featuring the automatic generation of polynomial chaos expansion (PCE) for linear and nonlinear dynamic systems with time-invariant stochastic parameters or in
We provide a MATLAB toolbox, BFDA, that implements a Bayesian hierarchical model to smooth multiple functional data with the assumptions of the same underlying Gaussian process distribution, a Gaussian process prior for the mean function, and an Inve
This paper describes the LPVcore software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (IO), state-space (SS) and linear fractional (LFR) representations. In the LPVcore