ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Hall phase emerging in an array of atoms interacting with photons

101   0   0.0 ( 0 )
 نشر من قبل Alexander N. Poddubny
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological quantum phases underpin many concepts of modern physics. While the existence of disorder-immune topological edge states of electrons usually requires magnetic fields, direct effects of magnetic field on light are very weak. As a result, demonstrations of topological states of photons employ synthetic fields engineered in special complex structures or external time-dependent modulations. Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system, where topological order arises solely from interactions without any fine-tuning. Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits. We believe that our finding will open new horizons in several disciplines including quantum physics, many-body physics, and nonlinear topological photonics, and it will set an important reference point for experiments on qubit arrays and quantum simulators.



قيم البحث

اقرأ أيضاً

116 - Michael J. Hartmann 2016
Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.
193 - Ke Liu , Lei Tan , C.-H Lv 2014
The features of superfluid-Mott insulator phase transition in the array of dissipative nonlinear cavities are analyzed. We show analytically that the coupling to the bath can be reduced to renormalizing the eigenmodes of atom-cavity system. This give s rise to a localizing effect and drives the system into mixed states. For the superfluid state, a dynamical instability will lead to a sweeping to a localized state of photons. For the Mott state, a dissipation-induced fluctuation will suppress the restoring of long-range phase coherence driven by interaction.
A complete characterization of quantum fluctuations in many-body systems is accessible through the full counting statistics. We present an exact computation of statistical properties of light in a basic model of light-matter interaction: a multimode photonic field coupled to a single two-level emitter. We mostly consider an initial coherent state in a given mode and demonstrate how the original Poissonian statistics gets modified because of quantum many-body scattering effects leading to non-Poissonian distributions. We argue that measuring this statistics in a simple quantum optical setup provides an insight into many-body correlation effects with photons.
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
This paper develops a scattering theory to examine how point impurities affect transport through quantum wires. While some of our new results apply specifically to hard-walled wires, others--for example, an effective optical theorem for two-dimension al waveguides--are more general. We apply the method of images to the hard-walled guide, explicitly showing how scattering from an impurity affects the wires conductance. We express the effective cross section of a confined scatterer entirely in terms of the empty waveguides Greens function, suggesting a way in which to use semiclassical methods to understand transport properties of smooth wires. In addition to predicting some new phenomena, our approach provides a simple physical picture for previously observed effects such as conductance dips and confinement-induced resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا