ﻻ يوجد ملخص باللغة العربية
Terahertz (THz) signals, mainly generated by photonic or electronic approaches, are being sought for various applications, whereas the development of magnetic source might be a necessary step to harness the magnetic nature of electromagnetic radiation. We show that the relativistic effect on the current-driven domain-wall motion induces THz spin-wave emission in ferrimagnets. The required current density increases dramatically in materials with strong exchange interaction and rapidly exceeds 1012 A m-2, leading to the device breakdown and thus the lack of experimental evidence. By translating the collective magnetization oscillations into voltage signals, we propose a three-terminal device for the electrical detection of THz spin wave. Through material engineering, wide frequency range from 264 GHz to 1.1 THz and uniform continuous signals with improved output power can be obtained. As a reverse effect, the spin wave generated in this system is able to move ferrimagnetic domain wall. Our work provides guidelines for the experimental verification of THz spin wave, and could stimulate the design of THz spintronic oscillators for wideband applications as well as the all-magnon spintronic devices.
We report on the electrical detection of a hybrid magnon-photon system, which is comprised of a magnetic sample coupled to a planar cavity. While the uniform Kittel mode has the largest coupling strength among all the magnon modes, it only generates
The terahertz spectral regime, ranging from about 0.1 to 15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broa
The demand for compact, high-speed and energy-saving circuitry urges higher efficiency of spintronic devices that can offer a viable alternative for the current electronics. The route towards this goal suggests implementing two-dimensional (2D) mater
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excit
We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the $