ﻻ يوجد ملخص باللغة العربية
High-resolution thermal expansion and magnetostriction measurements were performed on single crystals of $alpha$-RuCl$_3$ in magnetic fields applied parallel to the Ru-Ru bonds. The length changes were measured in the direction perpendicular to the honeycomb planes. Our data show clear thermodynamic characteristics for the field-induced phase transition at the critical field $mu_0H_{c1} = 7.8(2)$ T where the antiferromagnetic zigzag order is suppressed. At higher fields, a kink in the magnetostriction coefficient signals an additional phase transition around $mu_0H_{c2} approx 11$ T. The extracted Gruneisen parameter shows typical hallmarks for quantum criticality near $H_{c1}$, but also displays anomalous behavior above $H_{c1}$. We compare our experimental data with linear spin-wave calculations employing a minimal Kitaev-Heisenberg model in the semiclassical limit. Most of the salient features are in agreement with each other, however, the peculiar features in the high-field region above $H_{c1}$ cannot be accounted for in our modelling and hence suggest a genuine quantum nature. We construct a phase diagram for $alpha$-RuCl$_3$ showing two low-temperature transitions induced by an in-plane field along the Ru-Ru bonds.
Recently, $alpha$-$textrm{RuCl}_3$ has attracted much attention as a possible material realization of the honeycomb Kitaev model, which may stabilize a quantum-spin-liquid state. Compared to extensive studies on its magnetic properties, there is stil
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
Heat transport mediated by Majorana edge modes in a magnetic insulator leads to a half-integer thermal quantum Hall conductance, which has recently been reported for the two-dimensional honeycomb material $alpha$-RuCl$_3$. While the conventional elec
We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From
We use the constrained random phase approximation (cRPA) to derive from first principles the Ru-$t_{2g}$ Wannier function based model for the Kitaev spin-liquid candidate material $alpha$-RuCl$_3$. We find the non-local Coulomb repulsion to be sizabl