ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic Color Indices of Early-Type Dwarf Stars

93   0   0.0 ( 0 )
 نشر من قبل Dingshan Deng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dingshan Deng




اسأل ChatGPT حول البحث

Early-type stars are short lived and scarce in comparison with other types. Based on the recently released catalogs of early type stars from the largest LAMOST spectroscopic survey, the intrinsic colors of the stars with effective temperature up to 32,000,K are determined for the bands from ultraviolet to infrared by using the blue-edge method. Analytic relations are derived for the intrinsic color index with the effective temperature for the emph{WISE}, 2MASS, emph{Gaia}, APASS, SDSS, Pan-STARRS1, and emph{GALEX} bands. The results are generally consistent with previous works. In addition, the intrinsic colors of O-type dwarfs and OB supergiants are roughly estimated.

قيم البحث

اقرأ أيضاً

The aim of this work is to improve the SBC relation for early-type stars in the $-1 leq V-K leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The d erived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to $V-K simeq 4$ using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: $gamma$ Ori, $zeta$ Per, $8$ Cyg, $iota$ Her, $lambda$ Aql, $zeta$ Peg, $gamma$ Lyr, and $delta$ Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about $1.5%$. Using our total sample of 132 stars with $V-K$ colors index ranging from about $-1$ to $4$, we provide a revised SBC relation. For late-type stars ($0 leq V-K leq 4$), the results are consistent with previous studies. For early-type stars ($-1 leq V-K leq 0$), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or $simeq 7%$ in terms of angular diameter.
137 - Maria Messineo 2021
We present infrared spectral indices (1.0-2.3 um) of Galactic late-type giants and red supergiants (RSGs). We used existing and new spectra obtained at resolution power R=2000 with SpeX on the IRTF telescope. While a large CO equivalent width (EW), a t 2.29 um ([CO, 2.29]>45 AA) is a typical signature of RSGs later than spectral type M0, [CO] of K-type RSGs and giants are similar. In the [CO, 2.29] versus [Mg I, 1.71] diagram, RSGs of all spectral types can be distinguished from red giants, because the Mg I line weakens with increasing temperature and decreasing gravity. We find several lines that vary with luminosity, but not temperature: Si I (1.59 um), Sr (1.033 um), Fe+Cr+Si+CN (1.16 um), Fe+Ti (1.185 um), Fe+Ti (1.196 um), Ti+Ca (1.28 um), and Mn (1.29 um). Good markers of CN enhancement are the Fe+Si+CN line at 1.087 um and CN line at 1.093 um. Using these lines, at the resolution of SpeX, it is possible to separate RSGs and giants. Contaminant O-rich Mira and S-type AGBs are recognized by strong molecular features due to water vapor features, TiO band heads, and/or ZrO absorption. Among the 42 candidate RSGs that we observed, all but one were found to be late-types. 21 have EWs consistent with those of RSGs, 16 with those of O-rich Mira AGBs, and one with an S-type AGB. These infrared results open new, unexplored, potential for searches at low-resolution of RSGs in the highly obscured innermost regions of the Milky Way.
Massive, early type stars have been detected as radio sources for many decades. Their thermal winds radiate free-free continuum and in binary systems hosting a colliding-wind region, non-thermal emission has also been detected. To date, the most abun dant data have been collected from frequencies higher than 1 GHz. We present here the results obtained from observations at 325 and 610 MHz, carried out with the Giant Metrewave Radio Telescope, of all known Wolf-Rayet and O-type stars encompassed in area of ~15 sq degrees centred on the Cygnus region. We report on the detection of 11 massive stars, including both Wolf-Rayet and O-type systems. The measured flux densities at decimeter wavelengths allowed us to study the radio spectrum of the binary systems and to propose a consistent interpretation in terms of physical processes affecting the wide-band radio emission from these objects. WR 140 was detected at 610 MHz, but not at 325 MHz, very likely because of the strong impact of free-free absorption. We also report - for the first time - on the detection of a colliding-wind binary system down to 150 MHz, pertaining to the system of WR 146, making use of complementary information extracted from the TIFR GMRT Sky Survey. Its spectral energy distribution clearly shows the turnover at a frequency of about 600 MHz, that we interpret to be due to free-free absorption. Finally, we report on the identification of two additional particle-accelerating colliding-wind binaries, namely Cyg OB2 12 and ALS 15108 AB.
Aims. To explore the chemical pattern of early-type stars with planets, searching for a possible signature of planet formation. In particular, we study a likely relation between the lambda Bootis chemical pattern and the presence of giant planets. Me thods. We performed a detailed abundance determination in a sample of early-type stars with and without planets via spectral synthesis. Results. We compared the chemical pattern of the stars in our sample (13 stars with planets and 24 stars without detected planets) with those of lambda Bootis and other chemically peculiar stars. We have found four lambda Bootis stars in our sample, two of which present planets and circumstellar disks (HR 8799 and HD 169142) and one without planets detected (HD 110058). We have also identified the first lambda Bootis star orbited by a brown dwarf (zeta Del). This interesting pair lambda Bootis star + brown dwarf could help to test stellar formation scenarios. We found no unique chemical pattern for the group of early-type stars bearing giant planets. However, our results support, in principle, a suggested scenario in which giant planets orbiting pre-main-sequence stars possibly block the dust of the disk and result in a lambda Bootis-like pattern. On the other hand, we do not find a lambda Bootis pattern in different hot-Jupiter planet host stars, which do not support the idea of possible accretion from the winds of hot-Jupiters, recently proposed in the literature. Then, other mechanisms should account for the presence of the lambda Bootis pattern between main-sequence stars. Finally, we suggest that the formation of planets around lambda Bootis stars such as HR 8799 and HD 169142 is also possible through the core accretion process and not only gravitational instability [abridged]
Surface brightness-color relations (SBCRs) are used for estimating angular diameters and deriving stellar properties. They are critical to derive extragalactic distances of early-type and late-type eclipsing binaries or, potentially, for extracting p lanetary parameters of late-type stars hosting planets. Various SBCRs have been implemented so far, but strong discrepancies in terms of precision and accuracy still exist in the literature. We aim to develop a precise SBCR for early-type B and A stars using selection criteria, based on stellar characteristics, and combined with homogeneous interferometric angular diameter measurements. We also improve SBCRs for late-type stars, in particular in the Gaia photometric band. We observed 18 early-type stars with the VEGA interferometric instrument, installed on the CHARA array. We then applied additional criteria on the photometric measurements, together with stellar characteristics diagnostics in order to build the SBCRs. We calibrated a SBCR for subgiant and dwarf early-type stars. The RMS of the relation is $sigma_{F_{V_{0}}} = 0.0051,$mag, leading to an average precision of 2.3% on the estimation of angular diameters, with 3.1% for $V-K < -0.2,$mag and 1.8% for $V-K > -0.2,$mag. We found that the conversion between Johnson-$K$ and 2MASS-$K_s$ photometries is a key issue for early-type stars. Following this result, we have revisited our previous SBCRs for late-type stars by calibrating them with either converted Johnson-$K$ or 2MASS-$K_s$ photometries. We also improve the calibration of these SBCRs based on the Gaia photometry. The expected precision on the angular diameter using our SBCRs for late-type stars ranges from 1.0% to 2.7%. By reaching a precision of 2.3% on the estimation of angular diameters for early-type stars, significant progress has been made to determine extragalactic distances using early-type eclipsing binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا