ﻻ يوجد ملخص باللغة العربية
The motion of a dynamical system on an $n$-dimensional configuration space may be regarded as the lightlike shadow of null geodsics moving in an $(n+2)$ dimensional spacetime known as its Einsenhart-Duval lift. In this paper it is shown that if the configuration space is $n$-dimensional Euclidean space, and in the absence of magnetic type forces, the Eisenhart-Duval lift may be regarded as an $(n+1)$-brane moving in a flat $(n+4)$ -dimensional space with two times. If the Eisenhart-Duval lift is Ricci flat, then the $(n+1)$-brane moves in such a way as to extremise its spacetime volume. A striking example is provided by the motion of $N$ point particles moving in three-dimensional Euclidean space under the influence of their mutual gravitational attraction. Embeddings with curved configuration space metrics and velocity dependent forces are also be constructed. Some of the issues arising from the two times are addressed.
A cosmological extension of the Eisenhart-Duval metric is constructed by incorporating a cosmic scale factor and the energy-momentum tensor into the scheme. The dynamics of the spacetime is governed the Ermakov-Milne-Pinney equation. Killing isometri
A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M = M_0 times M_1 times cdots times M_n$, where $M_i$ are Einstein spaces ($i geq 1$). The sigma-model approach
We discuss supergravity inflation in braneworld cosmology for the class of potentials $V(phi)=alpha phi^nrm{exp}(-beta^m phi^m)$ with $m=1,~2$. These minimal SUGRA models evade the $eta$ problem due to a broken shift symmetry and can easily accommoda
It is widely known in quantum mechanics that solutions of the Schr{o}inger equation (SE) for a linear potential are in one-to-one correspondence with the solutions of the free SE. The physical reason for this correspondence is Einsteins principle of
Studies in string theory and quantum gravity suggest the existence of a finite lower limit $Delta x_0$ to the possible resolution of distances, at the latest on the scale of the Planck length of $10^{-35}m$. Within the framework of the euclidean path