ﻻ يوجد ملخص باللغة العربية
Antenna efficiency is one of the most important figures-of-merit of a radio telescope for observations especially at millimeter wavelengths or shorter wavelengths, even for a multibeam radio telescope. To analyze a system with a beam waveguide, a lossless antenna consisting of two apertures in series is considered in the frame of the scalar wave approximation. We found that the antenna efficiency can be evaluated with the field distribution over the second aperture, and that the antenna efficiency is factorized into three factors: efficiencies of beam coupling, transmission spillover, and reception spillover. The factorization is applicable to general aperture-type antennas with beam waveguides, and can relate the aperture efficiency to the pupil function. We numerically confirmed our factorization with an optical simulation. This evaluation enables us to manage the aberrations and is useful in design of multibeam radio telescopes.
We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASAs suborbital super-press
The response of the antenna is a source of uncertainty in measurements with the Experiment to Detect the Global EoR Signature (EDGES). We aim to validate the beam model of the low-band (50-100 MHz) dipole antenna with comparisons between models and a
Air-shower radio arrays operate in low signal-to-noise ratio conditions, which complicates the autonomous measurement of air-shower signals without using an external trigger from optical or scintillator detectors. A simple threshold trigger for radio
Here we briefly present some design approaches for a multifrequency 96-antenna radioheliograph. The array antenna configuration, transmission lines and digital receivers are the main focus of this work. The radioheliograph is a T-shaped centrally-con
Detecting a signal from the Epoch of Reionisation (EoR) requires an exquisite understanding of galactic and extra-galactic foregrounds, low frequency radio instruments, instrumental calibration, and data analysis pipelines. In this work we build upon