ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorization of Antenna Efficiency of Aperture-type antenna: Beam Coupling and Two Spillovers

232   0   0.0 ( 0 )
 نشر من قبل Makoto Nagai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antenna efficiency is one of the most important figures-of-merit of a radio telescope for observations especially at millimeter wavelengths or shorter wavelengths, even for a multibeam radio telescope. To analyze a system with a beam waveguide, a lossless antenna consisting of two apertures in series is considered in the frame of the scalar wave approximation. We found that the antenna efficiency can be evaluated with the field distribution over the second aperture, and that the antenna efficiency is factorized into three factors: efficiencies of beam coupling, transmission spillover, and reception spillover. The factorization is applicable to general aperture-type antennas with beam waveguides, and can relate the aperture efficiency to the pupil function. We numerically confirmed our factorization with an optical simulation. This evaluation enables us to manage the aberrations and is useful in design of multibeam radio telescopes.



قيم البحث

اقرأ أيضاً

We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASAs suborbital super-press ure balloon program in Antarctica. EVA will improve over ANITAs integrated totals - the current state-of-the-art in UHE suborbital payloads - by 1-2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVAs instantaneous antenna aperture is estimated to be several hundred square meters for detection of these events within a 150-600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy
The response of the antenna is a source of uncertainty in measurements with the Experiment to Detect the Global EoR Signature (EDGES). We aim to validate the beam model of the low-band (50-100 MHz) dipole antenna with comparisons between models and a gainst data. We find that simulations of a simplified model of the antenna over an infinite perfectly conducting ground plane are, with one exception, robust to changes of numerical electromagnetic solver code or algorithm. For simulations of the antenna with the actual finite ground plane and realistic soil properties, we find that two out of three numerical solvers agree well. Applying our analysis pipeline to a simulated driftscan observation from an early EDGES low-band instrument that had a 10 m $times$ 10 m ground plane, we find residual levels after fitting and removing a five-term foreground model to data binned in Local Sidereal Time (LST) average about 250 mK with $pm$40 mK variation between numerical solvers. A similar analysis of the primary 30 m $times$ 30 m sawtooth ground plane reduced the LST-averaged residuals to about 90 mK with $pm$10 mK between the two viable solvers. More broadly we show that larger ground planes generally perform better than smaller ground planes. Simulated data have a power which is within 4$%$ of real observations, a limitation of net accuracy of the sky and beam models. We observe that residual spectral structures after foreground model fits match qualitatively between simulated data and observations, suggesting that the frequency dependence of the beam is reasonably represented by the models. We find that soil conductivity of 0.02 Sm$^{-1}$ and relative permittivity of 3.5 yield good agreement between simulated spectra and observations. This is consistent with the soil properties reported by Sutinjo et al. (2015) for the Murchison Radio-astronomy Observatory, where EDGES is located.
Air-shower radio arrays operate in low signal-to-noise ratio conditions, which complicates the autonomous measurement of air-shower signals without using an external trigger from optical or scintillator detectors. A simple threshold trigger for radio detector can be efficiently applied onlyin radio-quiet conditions, because for other cases this trigger detects a high fraction of noise pulses. In the present work, we study aspects of independent air-shower detection by dense antenna clusters with a complex real-time trigger system. For choosing the optimal procedures for the real-time analysis, we study the dependence between trigger efficiency, count rate, detector hardware and geometry. For this study, we develop a framework for testing various methods of signal detection and noise filtration for arrays with various specifications and the hardware implementation of these methods based on field programmable gate arrays. The framework provides flexible settings for the management of station-level and cluster-level steps of detecting the signal, optimized for the hardware implementation for real-time processing. It includes data-processing tools for the initialconfiguration and tests on pre-recorded data, tools for configuring the trigger architecture andtools for preliminary estimates of the trigger efficiency at given thresholds of cosmic-ray energyand air-shower pulse amplitude. We show examples of the trigger pipeline developed with this framework and discuss the results of tests on simulated data.
Here we briefly present some design approaches for a multifrequency 96-antenna radioheliograph. The array antenna configuration, transmission lines and digital receivers are the main focus of this work. The radioheliograph is a T-shaped centrally-con densed radiointerferometer operating at the frequency range 4-8~GHz. The justification for the choice of such a configuration is discussed. The antenna signals are transmitted to a workroom by analog optical links. The dynamic range and phase errors of the microwave-over-optical signal are considered. The signals after downconverting are processed by the digital receivers for delay tracking and fringe stopping. The required delay tracking step and data rates are considered. Two 3-bit data streams (I and Q) are transmitted to a correlator with the transceivers embedded in FPGA (Field Programmed Gate Array) chips and with PCI Express cables.
Detecting a signal from the Epoch of Reionisation (EoR) requires an exquisite understanding of galactic and extra-galactic foregrounds, low frequency radio instruments, instrumental calibration, and data analysis pipelines. In this work we build upon existing work that aims to understand the impact of calibration errors on 21-cm power spectrum (PS) measurements. It is well established that calibration errors have the potential to inhibit EoR detections by introducing additional spectral features that mimic the structure of EoR signals. We present a straightforward way to estimate the impact of a wide variety of modelling residuals in EoR PS estimation. We apply this framework to the specific case of broken dipoles in Murchison Widefield Array (MWA) to understand its effect and estimate its impact on PS estimation. Combining an estimate of the percentage of MWA tiles that have at least one broken dipole (15%-40%) with an analytic description of beam errors induced by such dipoles, we compute the residuals of the foregrounds after calibration and source subtraction. We find that that incorrect beam modelling introduces bias in the 2D-PS on the order of $sim 10^3, mathrm{mK}^2 ,h^{-3}, mathrm{Mpc}^{3}$. Although this is three orders of magnitude lower than current lowest limits, it is two orders of magnitude higher than the expected signal. Determining the accuracy of both current beam models and direction dependent calibration pipelines is therefore crucial in our search for an EoR signal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا