ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid model for estimation of pore size from ortho-positronium lifetimes in porous materials

255   0   0.0 ( 0 )
 نشر من قبل Nguyen Quang Hung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present paper proposes a novel model for estimating the free-volume size of porous materials based on the analysis of various experimental ortho-positronium ($o$-Ps) lifetime data. The model is derived by combining the semi-classical (SE) physics model, which works in the region of large pores (pore size $R >$ 1 nm), with the conventional Tao-Eldrup (TE) model, which is applicable only for the small-pore region ($R <$ 1 nm). Thus, the proposed model, called the hybrid (HYB) model, is able to smoothly connect the $o$-Ps lifetimes in the two regions of the pore. Moreover, by introducing the $o$-Ps diffusion probability parameter ($D$), the HYB model has reproduced quite well the experimental $o$-Ps lifetimes in the whole region of pore sizes. It is even in a better agreement with the experimental data than the most up-to-date rectangular TE (RTE) and Tokyo models. In particular, by adjusting the value of $D$, the HYB model can also describe very well the two defined sets of experimental $o$-Ps lifetimes in the pores with spherical and channel geometries. The merit of the present model, in comparison with the previously proposed ones, is that it is applicable for the pore size in the universal range of $0.2 - 400$ nm for most of porous materials with different geometries.



قيم البحث

اقرأ أيضاً

We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer f ilms, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.
The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challe nging problem, with no exhaustive solution at the present time. In this work we compile a series of techniques, some previously known, that allow for a solution to this problem for a large set of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works at all levels of materials modeling: continuous k.p models, tight-binding models and ab initio calculations. We apply the method to compute and identify Chern, Z2 and crystalline topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for high-throughput screening of materials databases for compounds with non-trivial topologies. We expect that our work will allow researchers to: (a) identify topological materials optimal for experimental probes, (b) classify existing compounds and (c) reveal materials that host novel, not yet described, topological states.
Shock wave reaction results in various characteristic regimes in porous material. The geometrical and topological properties of these regimes are highly concerned in practical applications. Via the morphological analysis to characteristic regimes wit h high temperature, we investigate the thermodynamics of shocked porous materials whose mechanical properties cover a wide range from hyperplasticity to elasticity. It is found that, under fixed shock strength, the total fractional area $A$ of the high-temperature regimes with $T geq T_{th}$ and its saturation value first increase, then decrease with the increasing of the initial yield $sigma_{Y0}$, where $T_{th}$ is a given threshold value of temperature $T$. In the shock-loading procedure, the fractional area $A(t)$ may show the same behavior if $T_{th}$ and $sigma_{Y0}$ are chosen appropriately. Under the same $A(t)$ behavior, $T_{th}$ first increases then decreases with $sigma_{Y0}$. At the maximum point $sigma_{Y0M}$, the shock wave contributes the maximum plastic work. Around $sigma_{Y0M}$, two materials with different mechanical properties may share the same $A(t)$ behavior even for the same $T_{th}$. The characteristic regimes in the material with the larger $sigma_{Y0}$ are more dispersed.
A theory of flow stress (FS), reviewing and developing our research,e.g. arxiv:1803.08247;1908.09338, is proposed,including yield strength (YS) of PC materials for quasi-static plastic loading for grain of average size d in range 10^{-8}-10^{-2}m. It s based on statistical model of energy spectrum distribution in each grain of 1-mode PC sample under plastic loading,with highest level equal to maximal dislocation energy. Found distribution of scalar dislocation density leads to FS due to Taylor strain hardening containing usual and anomalous HP laws for coarse and NC grains, respectively, and reaches maximum for extreme grain size d_0 of order 10^{-8}m. Maximum undergoes shift to region of larger grains for decreasing T and increasing strains. Coincidence is established among theoretical and experimental data on YS for BCC(alpha-Fe), FCC(Cu,Al,Ni),HCP(alpha-Ti,Zr) PC materials at T=300K.The T-dependence of strength quantities is studied. It is shown using Al that YS grows with decrease in T for all grains with d>3d_0,and then YS decreases in NC region,thus determining a temperature-dimension effect (TDE).1-phase model of PC sample is extended by including softening GB phase into 2-phase model,and then by dispersion (un)hardening. A quasi-particle interpretation of crystallite energy quantization is suggested.Analytic and graphic forms of HP laws are obtained in above samples with different values of small-,large-angle GB and constant pores.The maximum of YS and respective extremal grain size of the samples are shifted by change of 2-nd phase.The T-dependence of YS in range of 150-350K for Al demonstrates the validity of TDE. An enlargement of 2-nd phase neutralizes TDE.Deformation curves for 1- and 2-mode 2-phase alpha-Fe PC model are constructed with Backofen-Considere fracture criterion,as compared to experimental,1-phase model data, and strongly depend on multimodality and GB
Computational screening methods have been accelerating discovery of new materials and deployment of technologies based on them in many areas from batteries and alloys to photovoltaics and separation processes. In this review, we focus on post-combust ion carbon capture using adsorption in porous materials. Prompted by unprecedented developments in material science, researchers in material engineering, molecular simulations, and process modelling have been interested in finding the best materials for carbon capture using energy efficient pressure-swing adsorption processes. Recent efforts have been directed towards development of new multiscale and performance-based screening workflows where we are able to go from the atomistic structure of an adsorbent to its equilibrium and transport properties for gas adsorption, and eventually to its separation performance in the actual process. The objective of this article is to review the current status of these emerging approaches, explain their significance for materials screening, while at the same time highlighting the existing pitfalls and challenges that limit their application in practice and industry. It is also the intention of this review to encourage cross-disciplinary collaborations for the development of more advanced screening methodologies. For this specific reason, we undertake an additional task of compiling and introducing all the elements that are needed for the development and operation of the performance-based screening workflows, including information about available materials databases, state-of-the-art molecular simulation and process modelling tools and methods, and the full list of data and parameters required for each stage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا