ترغب بنشر مسار تعليمي؟ اضغط هنا

ITO-Based Microheaters for Reversible Multi-Stage Switching of Phase-Change Materials: Towards Miniaturized Beyond-Binary Reconfigurable Integrated Photonics

187   0   0.0 ( 0 )
 نشر من قبل Sajjad Abdollahramezani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inducing a large refractive-index change is the holy grail of reconfigurable photonic structures, a goal that has long been the driving force behind the discovery of new optical material platforms. Recently, the unprecedentedly large refractive-index contrast between the amorphous and crystalline states of Ge-Sb-Te (GST)-based phase-change materials (PCMs) has attracted tremendous attention for reconfigurable integrated nanophotonics. Here, we introduce a microheater platform that employs optically transparent and electrically conductive indium-tin-oxide (ITO) bridges for the fast and reversible electrical switching of the GST phase between crystalline and amorphous states. By the proper assignment of electrical pulses applied to the ITO microheater, we show that our platform allows for the registration of virtually any intermediate crystalline state into the GST film integrated on the top of the designed microheaters. More importantly, we demonstrate the full reversibility of the GST phase between amorphous and crystalline states. To show the feasibility of using this hybrid GST/ITO platform for miniaturized integrated nanophotonic structures, we integrate our designed microheaters into the arms of a Mach-Zehnder interferometer to realize electrically reconfigurable optical phase shifters with orders of magnitude smaller footprints compared to existing integrated photonic architectures. We show that the phase of optical signals can be gradually shifted in multiple intermediate states using a structure that can potentially be smaller than a single wavelength. We believe that our study showcases the possibility of forming a whole new class of miniaturized reconfigurable integrated nanophotonics using beyond-binary reconfiguration of optical functionalities in hybrid PCM-photonic devices.

قيم البحث

اقرأ أيضاً

115 - Carlos Rios 2020
Reconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a const ant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfiguration techniques which are compatible with on-chip integration with different photonic platforms and do not disrupt their optical performances. In this paper, a solution is demonstrated using an optoelectronic framework for nonvolatile tunable photonics that employs undoped-graphene microheaters to thermally and reversibly switch the optical phase-change material Ge$_2$Sb$_2$Se$_4$Te$_1$ (GSST). An in-situ Raman spectroscopy method is utilized to demonstrate, in real-time, reversible switching between four different levels of crystallinity. Moreover, a 3D computational model is developed to precisely interpret the switching characteristics, and to quantify the impact of current saturation on power dissipation, thermal diffusion, and switching speed. This model is used to inform the design of nonvolatile active photonic devices; namely, broadband Si$_3$N$_4$ integrated photonic circuits with small form-factor modulators and reconfigurable metasurfaces displaying 2$pi$ phase coverage through neural-network-designed GSST meta-atoms. This framework will enable scalable, low-loss nonvolatile applications across a diverse range of photonics platforms.
Progress in integrated nanophotonics has enabled large-scale programmable photonic integrated circuits (PICs) for general-purpose electronic-photonic systems on a chip. Relying on the weak, volatile thermo-optic or electro-optic effects, such systems usually exhibit limited reconfigurability along with high energy consumption and large footprints. These challenges can be addressed by resorting to chalcogenide phase-change materials (PCMs) such as Ge2Sb2Te5 (GST) that provide substantial optical contrast in a self-holding fashion upon phase transitions. However, current PCM-based integrated photonic applications are limited to single devices or simple PICs due to the poor scalability of the optical or electrical self-heating actuation approaches. Thermal-conduction heating via external electrical heaters, instead, allows large-scale integration and large-area switching, but fast and energy-efficient electrical control is yet to show. Here, we model electrical switching of GST-clad integrated nanophotonic structures with graphene heaters based on the programmable GST-on-silicon platform. Thanks to the ultra-low heat capacity and high in-plane thermal conductivity of graphene, the proposed structures exhibit a high switching speed of ~80 MHz and high energy efficiency of 19.2 aJ/nm^3 (6.6 aJ/nm^3) for crystallization (amorphization) while achieving complete phase transitions to ensure strong attenuation (~6.46 dB/micron) and optical phase (~0.28 dB/micron at 1550 nm) modulation. Compared with indium tin oxide and silicon p-i-n heaters, the structures with graphene heaters display two orders of magnitude higher figure of merits for heating and overall performance. Our work facilitates the analysis and understanding of the thermal-conduction heating-enabled phase transitions on PICs and supports the development of the future large-scale PCM-based electronic-photonic systems.
Electro-optic modulators transform electronic signals into the optical domain and are critical components in modern telecommunication networks, RF photonics, and emerging applications in quantum photonics and beam steering. All these applications req uire integrated and voltage-efficient modulator solutions with compact formfactors that are seamlessly integratable with Silicon photonics platforms and feature near-CMOS material processing synergies. However, existing integrated modulators are challenged to meet these requirements. Conversely, emerging electro-optic materials heterogeneously integrated with Si photonics open a new avenue for device engineering. Indium tin oxide (ITO) is one such compelling material for heterogeneous integration in Si exhibiting formidable electro-optic effect characterized by unity order index at telecommunication frequencies. Here we overcome these limitations and demonstrate a monolithically integrated ITO electro- optic modulator based on a Mach Zehnder interferometer (MZI) featuring a high-performance half-wave voltage and active device length product, VpL = 0.52 V-mm. We show, how that the unity-strong index change enables a 30 micrometer-short pi-phase shifter operating ITO in the index-dominated region away from the epsilon-bear-zero ENZ point. This device experimentally confirms electrical phase shifting in ITO enabling its use in multifaceted applications including dense on-chip communication networks, nonlinearity for activation functions in photonic neural networks, and phased array applications for LiDAR.
130 - Yifei Zhang 2018
Optical phase change materials (O-PCMs), a unique group of materials featuring drastic optical property contrast upon solid-state phase transition, have found widespread adoption in photonic switches and routers, reconfigurable meta-optics, reflectiv e display, and optical neuromorphic computers. Current phase change materials, such as Ge-Sb-Te (GST), exhibit large contrast of both refractive index (delta n) and optical loss (delta k), simultaneously. The coupling of both optical properties fundamentally limits the function and performance of many potential applications. In this article, we introduce a new class of O-PCMs, Ge-Sb-Se-Te (GSST) which breaks this traditional coupling, as demonstrated with an optical figure of merit improvement of more than two orders of magnitude. The first-principle computationally optimized alloy, Ge2Sb2Se4Te1, combines broadband low optical loss (1-18.5 micron), large optical contrast (delta n = 2.0), and significantly improved glass forming ability, enabling an entirely new field of infrared and thermal photonic devices. We further leverage the material to demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio, as well as an electrically addressed, microsecond switched pixel level spatial light modulator, thereby validating its promise as a platform material for scalable nonvolatile photonics.
Gallium phosphide (GaP) is an indirect bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties---including large $chi^{(2)}$ and $chi^{(3)}$ coefficients, a high refractive index ($>3$), and transpare ncy from visible to long-infrared wavelengths ($0.55-11,mu$m)---its application as an integrated photonics material has been little studied. Here we introduce GaP-on-insulator as a platform for nonlinear photonics, exploiting a direct wafer bonding approach to realize integrated waveguides with 1.2 dB/cm loss in the telecommunications C-band (on par with Si-on-insulator). High quality $(Q> 10^5)$, grating-coupled ring resonators are fabricated and studied. Employing a modulation transfer approach, we obtain a direct experimental estimate of the nonlinear index of GaP at telecommunication wavelengths: $n_2=1.2(5)times 10^{-17},text{m}^2/text{W}$. We also observe Kerr frequency comb generation in resonators with engineered dispersion. Parametric threshold powers as low as 3 mW are realized, followed by broadband ($>100$ nm) frequency combs with sub-THz spacing, frequency-doubled combs and, in a separate device, efficient Raman lasing. These results signal the emergence of GaP-on-insulator as a novel platform for integrated nonlinear photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا